3,841 research outputs found
The T cell antigen receptor complex expressed on normal peripheral blood CD4-, CD8- T lymphocytes. A CD3-associated disulfide-linked gamma chain heterodimer.
IL-2-dependent cell lines were established from normal peripheral blood T lymphocytes that express neither CD4 nor CD8 differentiation antigens. CD3+,4-,8- cell lines from 15 different donors failed to react with WT31, an mAb directed against the T cell antigen receptor alpha/beta heterodimer. Anti-Leu-4 mAb was used to isolate the CD3/T cell antigen receptor complex from 125I-labeled CD3+,4-,8- (WT31-) T cells. Using detergent conditions that preserved the CD3/T cell antigen receptor complex, an approximately 90 kD disulfide-linked heterodimer, composed of approximately 45- and approximately 40- (or approximately 37-) kD subunits, was coimmunoprecipitated with the invariant 20-29-kD CD3 complex. Analysis of these components by nonequilibrium pH gradient electrophoresis indicated that the approximately 40-kD and approximately 37-kD subunits were similar, and quite distinct from the more basic approximately 45-kD subunit. None of these three subunits reacted with an antibody directed against a beta chain framework epitope. Heteroantiserum against a T cell receptor gamma chain peptide specifically reacted with both the approximately 37- and approximately 40-kD CD3-associated proteins, but not with the approximately 45-kD subunit. CD3+,4-,8- cells failed to transcribe substantial amounts of functional 1.3-kb beta or 1.6-kb alpha mRNA, but produced abundant 1.6-kb gamma mRNA. Southern blot analysis revealed that these CD3+,4-,8- cell lines rearranged both gamma and beta genes, and indicated that the populations were polyclonal. The expression of a CD3-associated disulfide-linked heterodimer on CD3+,4-,8- T cell lines established from normal, adult peripheral blood contrasts with prior reports describing a CD3-associated non-disulfide-linked heterodimer on CD3+/WT31- cell lines established from thymus and peripheral blood obtained from patients with immunodeficiency diseases. We propose that this discrepancy may be explained by preferential usage of the two C gamma genes in T lymphocytes
Recommended from our members
A phase II study of temozolomide vs. procarbazine in patients with glioblastoma multiforme at first relapse.
A randomized, multicentre, open-label, phase II study compared temozolomide (TMZ), an oral second-generation alkylating agent, and procarbazine (PCB) in 225 patients with glioblastoma multiforme at first relapse. Primary objectives were to determine progression-free survival (PFS) at 6 months and safety for TMZ and PCB in adult patients who failed conventional treatment. Secondary objectives were to assess overall survival and health-related quality of life (HRQL). TMZ was given orally at 200 mg/m(2)/day or 150 mg/m(2)/day (prior chemotherapy) for 5 days, repeated every 28 days. PCB was given orally at 150 mg/m(2)/day or 125 mg/m(2)/day (prior chemotherapy) for 28 days, repeated every 56 days. HRQL was assessed using the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ-C30 [+3]) and the Brain Cancer Module 20 (BCM20). The 6-month PFS rate for patients who received TMZ was 21%, which met the protocol objective. The 6-month PFS rate for those who received PCB was 8% (P = 0.008, for the comparison). Overall PFS significantly improved with TMZ, with a median PFS of 12.4 weeks in the TMZ group and 8.32 weeks in the PCB group (P = 0.0063). The 6-month overall survival rate for TMZ patients was 60% vs. 44% for PCB patients (P = 0.019). Freedom from disease progression was associated with maintenance of HRQL, regardless of treatment received. TMZ had an acceptable safety profile; most adverse events were mild or moderate in severity
The Impact of HAART on the Respiratory Complications of HIV Infection: Longitudinal Trends in the MACS and WIHS Cohorts
Objective: To review the incidence of respiratory conditions and their effect on mortality in HIV-infected and uninfected individuals prior to and during the era of highly active antiretroviral therapy (HAART). Design: Two large observational cohorts of HIV-infected and HIV-uninfected men (Multicenter AIDS Cohort Study [MACS]) and women (Women's Interagency HIV Study [WIHS]), followed since 1984 and 1994, respectively. Methods: Adjusted odds or hazards ratios for incident respiratory infections or non-infectious respiratory diagnoses, respectively, in HIV-infected compared to HIV-uninfected individuals in both the pre-HAART (MACS only) and HAART eras; and adjusted Cox proportional hazard ratios for mortality in HIV-infected persons with lung disease during the HAART era. Results: Compared to HIV-uninfected participants, HIV-infected individuals had more incident respiratory infections both pre-HAART (MACS, odds ratio [adjusted-OR], 2.4; 95% confidence interval [CI], 2.2-2.7; p<0.001) and after HAART availability (MACS, adjusted-OR, 1.5; 95%CI 1.3-1.7; p<0.001; WIHS adjusted-OR, 2.2; 95%CI 1.8-2.7; p<0.001). Chronic obstructive pulmonary disease was more common in MACS HIV-infected vs. HIV-uninfected participants pre-HAART (hazard ratio [adjusted-HR] 2.9; 95%CI, 1.02-8.4; p = 0.046). After HAART availability, non-infectious lung diseases were not significantly more common in HIV-infected participants in either MACS or WIHS participants. HIV-infected participants in the HAART era with respiratory infections had an increased risk of death compared to those without infections (MACS adjusted-HR, 1.5; 95%CI, 1.3-1.7; p<0.001; WIHS adjusted-HR, 1.9; 95%CI, 1.5-2.4; p<0.001). Conclusion: HIV infection remained a significant risk for infectious respiratory diseases after the introduction of HAART, and infectious respiratory diseases were associated with an increased risk of mortality. © 2013 Gingo et al
Variational Methods for Biomolecular Modeling
Structure, function and dynamics of many biomolecular systems can be
characterized by the energetic variational principle and the corresponding
systems of partial differential equations (PDEs). This principle allows us to
focus on the identification of essential energetic components, the optimal
parametrization of energies, and the efficient computational implementation of
energy variation or minimization. Given the fact that complex biomolecular
systems are structurally non-uniform and their interactions occur through
contact interfaces, their free energies are associated with various interfaces
as well, such as solute-solvent interface, molecular binding interface, lipid
domain interface, and membrane surfaces. This fact motivates the inclusion of
interface geometry, particular its curvatures, to the parametrization of free
energies. Applications of such interface geometry based energetic variational
principles are illustrated through three concrete topics: the multiscale
modeling of biomolecular electrostatics and solvation that includes the
curvature energy of the molecular surface, the formation of microdomains on
lipid membrane due to the geometric and molecular mechanics at the lipid
interface, and the mean curvature driven protein localization on membrane
surfaces. By further implicitly representing the interface using a phase field
function over the entire domain, one can simulate the dynamics of the interface
and the corresponding energy variation by evolving the phase field function,
achieving significant reduction of the number of degrees of freedom and
computational complexity. Strategies for improving the efficiency of
computational implementations and for extending applications to coarse-graining
or multiscale molecular simulations are outlined.Comment: 36 page
In vivo imaging of glycol chitosan-based nanogel biodistribution
The preclinical development of nanomedicines raises several challenges and requires a comprehensive characterization. Among them is the evaluation of the biodistribution following systemic administration. In previous work, the biocompatibility and in vitro targeting ability of a glycol chitosan (GC) based nanogel have been validated. In the present study, its biodistribution in the mice is assessed, using near-infrared (NIR) fluorescence imaging as a tool to track the nanogel over time, after intravenous administration. Rapid whole body biodistribution of both Cy5.5 labeled GC nanogel and free polymer is found at early times. It remains widespreadly distributed in the body at least up to 6 h postinjection and its concentration then decreases drastically after 24 h. Nanogel blood circulation half-life lies around 2 h with the free linear GC polymer presenting lower blood clearance rate. After 24 h, the blood NIR fluorescence intensity associated with both samples decreases to insignificant values. NIR imaging of the organs shows that the nanogel had a body clearance time of 48 h, because at this time point a weak signal of NIR fluorescence is observed only in the kidneys. Hereupon it can be concluded that the engineered GC nanogel has a fairly long blood circulation time, suitable for biomedical applications, namely, drug delivery, simultaneously allowing efficient and quick body clearance.Acknowledgements: The authors thank the FCT Strategic Project of UID/BIO/04469/2013 unit, the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462), and the Project “BioHealth— Biotechnology and Bioengineering approaches to improve health quality,” Ref. NORTE-07-0124-FEDER-000027, co-funded by the Programa Operacional Regional do Norte (ON.2-O Novo Norte), QREN, FEDER. The authors also thank António Temudo, Dolores Bonaparte, and Sílvia Santos Pedrosa for the support on in vivo assays. Paula Pereira acknowledges FCT for the PhD grant SFRH/ BD/64977/2009
Effect of parasympathetic stimulation on brain activity during appraisal of fearful expressions
Autonomic nervous system activity is an important component of human emotion. Mental processes influence bodily physiology, which in turn feeds back to influence thoughts and feelings. Afferent cardiovascular signals from arterial baroreceptors in the carotid sinuses are processed within the brain and contribute to this two-way communication with the body. These carotid baroreceptors can be stimulated non-invasively by externally applying focal negative pressure bilaterally to the neck. In an experiment combining functional neuroimaging (fMRI) with carotid stimulation in healthy participants, we tested the hypothesis that manipulating afferent cardiovascular signals alters the central processing of emotional information (fearful and neutral facial expressions). Carotid stimulation, compared with sham stimulation, broadly attenuated activity across cortical and brainstem regions. Modulation of emotional processing was apparent as a significant expression-by-stimulation interaction within left amygdala, where responses during appraisal of fearful faces were selectively reduced by carotid stimulation. Moreover, activity reductions within insula, amygdala, and hippocampus correlated with the degree of stimulation-evoked change in the explicit emotional ratings of fearful faces. Across participants, individual differences in autonomic state (heart rate variability, a proxy measure of autonomic balance toward parasympathetic activity) predicted the extent to which carotid stimulation influenced neural (amygdala) responses during appraisal and subjective rating of fearful faces. Together our results provide mechanistic insight into the visceral component of emotion by identifying the neural substrates mediating cardiovascular influences on the processing of fear signals, potentially implicating central baroreflex mechanisms for anxiolytic treatment targets
X-Ray Spectroscopy of Stars
(abridged) Non-degenerate stars of essentially all spectral classes are soft
X-ray sources. Low-mass stars on the cooler part of the main sequence and their
pre-main sequence predecessors define the dominant stellar population in the
galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense,
of X-ray spectra from the solar corona. X-ray emission from cool stars is
indeed ascribed to magnetically trapped hot gas analogous to the solar coronal
plasma. Coronal structure, its thermal stratification and geometric extent can
be interpreted based on various spectral diagnostics. New features have been
identified in pre-main sequence stars; some of these may be related to
accretion shocks on the stellar surface, fluorescence on circumstellar disks
due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot
stars clearly dominate the interaction with the galactic interstellar medium:
they are the main sources of ionizing radiation, mechanical energy and chemical
enrichment in galaxies. High-energy emission permits to probe some of the most
important processes at work in these stars, and put constraints on their most
peculiar feature: the stellar wind. Here, we review recent advances in our
understanding of cool and hot stars through the study of X-ray spectra, in
particular high-resolution spectra now available from XMM-Newton and Chandra.
We address issues related to coronal structure, flares, the composition of
coronal plasma, X-ray production in accretion streams and outflows, X-rays from
single OB-type stars, massive binaries, magnetic hot objects and evolved WR
stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures
(partly multiple); some corrections made after proof stag
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
- …
