54 research outputs found
Infarct-remodelled hearts with limited oxidative capacity boost fatty acid oxidation after conditioning against ischaemia/reperfusion injury
Aims Infarct-remodelled hearts are less amenable to protection against ischaemia/reperfusion. Understanding preservation of energy metabolism in diseased vs. healthy hearts may help to develop anti-ischaemic strategies effective also in jeopardized myocardium. Methods and results Isolated infarct-remodelled/sham Sprague-Dawley rat hearts were perfused in the working mode and subjected to 15 min of ischaemia and 30 min of reperfusion. Protection of post-ischaemic ventricular work was achieved by pharmacological conditioning with sevoflurane. Oxidative metabolism was measured by substrate flux in fatty acid and glucose oxidation using [3H]palmitate and [14C]glucose. Mitochondrial oxygen consumption was measured in saponin-permeabilized left ventricular muscle fibres. Activity assays of citric acid synthase, hydroxyacyl-CoA dehydrogenase, and pyruvate dehydrogenase and mass spectrometry for acylcarnitine profiling were also performed. Six weeks after coronary artery ligation, the hearts exhibited macroscopic and molecular signs of hypertrophy consistent with remodelling and limited respiratory chain and citric acid cycle capacity. Unprotected remodelled hearts showed a marked decline in palmitate oxidation and acetyl-CoA energy production after ischaemia/reperfusion, which normalized in sevoflurane-protected remodelled hearts. Protected remodelled hearts also showed higher β-oxidation flux as determined by increased oxygen consumption with palmitoylcarnitine/malate in isolated fibres and a lower ratio of C16:1+C16OH/C14 carnitine species, indicative of a higher long-chain hydroxyacyl-CoA dehydrogenase activity. Remodelled hearts exhibited higher PPARα-PGC-1α but defective HIF-1α signalling, and conditioning enabled them to mobilize fatty acids from endogenous triglyceride stores, which closely correlated with improved recovery. Conclusions Protected infarct-remodelled hearts secure post-ischaemic energy production by activation of β-oxidation and mobilization of fatty acids from endogenous triglyceride store
Lipid Emulsion Containing High Amounts of n3 Fatty Acids (Omegaven) as Opposed to n6 Fatty Acids (Intralipid) Preserves Insulin Signaling and Glucose Uptake in Perfused Rat Hearts
BACKGROUND:
It is currently unknown whether acute exposure to n3 fatty acid–containing fish oil–based lipid emulsion Omegaven as opposed to the n6 fatty acid–containing soybean oil–based lipid emulsion Intralipid is more favorable in terms of insulin signaling and glucose uptake in the intact beating heart.
METHODS:
Sprague–Dawley rat hearts were perfused in the working mode for 90 minutes in the presence of 11 mM glucose and 1.2 mM palmitate bound to albumin, the first 30 minutes without insulin followed by 60 minutes with insulin (50 mU/L). Hearts were randomly allocated to 100 µM Intralipid, 100 µM Omegaven, or no emulsion (insulin treatment alone) for 60 minutes. Glycolysis and glycogen synthesis were measured with the radioactive tracer [5-3H]glucose, and glucose uptake was calculated. Phosphorylation of protein phosphatase 2A (PP2A), protein kinase Akt, and phosphofructokinase (PFK)-2 was measured by immunoblotting. Glycolytic metabolites were determined by enzymatic assays. Mass spectrometry was used to establish acylcarnitine profiles. Nuclear factor κB (NFκB) nuclear translocation served as reactive oxygen species (ROS) biosensor.
RESULTS:
Insulin-mediated glucose uptake was decreased by Intralipid (4.9 ± 0.4 vs 3.7 ± 0.3 μmol/gram dry heart weight [gdw]·min; P = .047) due to both reduced glycolysis and glycogen synthesis. In contrast, Omegaven treatment did not affect insulin-mediated glycolysis or glycogen synthesis and thus preserved glucose uptake (5.1 ± 0.3 vs 4.9 ± 0.4 μmol/gdw·min; P = .94). While Intralipid did not affect PP2A phosphorylation status, Omegaven resulted in significantly enhanced tyrosine phosphorylation and inhibition of PP2A. This was accompanied by increased selective threonine phosphorylation of Akt and the downstream target PFK-2 at S483. PFK-1 activity was increased when compared with Intralipid as measured by the ratio of fructose 1,6-bisphosphate to fructose 6-phosphate (Omegaven 0.60 ± 0.11 versus Intralipid 0.47 ± 0.09; P = .023), consistent with increased formation of fructose 2,6-bisphosphate by PFK2, its main allosteric activator. Omegaven lead to accumulation of acylcarnitines and fostered a prooxidant response as evidenced by NFκB nuclear translocation and activation.
CONCLUSIONS:
Omegaven as opposed to Intralipid preserves glucose uptake via the PP2A–Akt–PFK pathway in intact beating hearts. n3 fatty acids decelerate β-oxidation causing accumulation of acylcarnitine species and a prooxidant response, which likely inhibits redox-sensitive PP2A and thus preserves insulin signaling and glucose uptake
Increased Lipolysis and Energy Expenditure in a Mouse Model with Severely Impaired Glucagon Secretion
10.1371/journal.pone.0026671PLoS ONE610
Quantitative profiling of inflammatory and pro-resolving lipid mediators in human adolescents and mouse plasma using UHPLC-MS/MS
Objectives
Lipid mediators are bioactive lipids which help regulate inflammation. We aimed to develop an ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method to quantify 58 pro-inflammatory and pro-resolving lipid mediators in plasma, determine preliminary reference ranges for adolescents, and investigate how total parenteral nutrition (TPN) containing omega-3 polyunsaturated fatty acid (n-3 PUFA) or n-6 PUFA based lipid emulsions influence lipid mediator concentrations in plasma.
Methods
Lipid mediators were extracted from plasma using SPE and measured using UHPLC-MS/MS. EDTA plasma was collected from healthy adolescents between 13 and 17 years of age to determine preliminary reference ranges and from mice given intravenous TPN for seven days containing either an n-3 PUFA or n-6 PUFA based lipid emulsion.
Results
We successfully quantified 43 lipid mediators in human plasma with good precision and recovery including several leukotrienes, prostaglandins, resolvins, protectins, maresins, and lipoxins. We found that the addition of methanol to human plasma after blood separation reduces post blood draw increases in 12-hydroxyeicosatetraenoic acid (12-HETE), 12-hydroxyeicosapentaenoic acid (12-HEPE), 12S-hydroxyeicosatrienoic acid (12S-HETrE), 14-hydroxydocosahexaenoic acid (14-HDHA) and thromboxane B2 (TXB2). Compared to the n-6 PUFA based TPN, the n-3 PUFA based TPN increased specialized pro-resolving mediators such as maresin 1 (MaR1), MaR2, protectin D1 (PD1), PDX, and resolvin D5 (RvD5), and decreased inflammatory lipid mediators such as leukotriene B4 (LTB4) and prostaglandin D2 (PGD2).
Conclusions
Our method provides an accurate and sensitive quantification of 58 lipid mediators from plasma samples, which we used to establish a preliminary reference range for lipid mediators in plasma samples of adolescents; and to show that n-3 PUFA, compared to n-6 PUFA rich TPN, leads to a less inflammatory lipid mediator profile in mice
The Novel Lipid Emulsion Vegaven Is Well Tolerated and Elicits Distinct Biological Actions Compared With a Mixed-Oil Lipid Emulsion Containing Fish Oil: A Parenteral Nutrition Trial in Piglets
Background
Vegaven is a novel lipid emulsion for parenteral nutrition (PN) based on 18-carbon n–3 (ω-3) fatty acids, which elicits liver
protection via interleukin-10 (IL-10) in the murine model of PN.
Objectives
In a preclinical model of PN in neonatal piglets, Vegaven was tested for efficacy and safety and compared with a mixed-oil lipid emulsion containing fish oil (SMOFlipid).
Methods
Male piglets 4–5 d old were randomly allocated to isocaloric isonitrogenous PN for 14 d, which varied only by the type of lipid
emulsion (Vegaven, n ¼ 8; SMOFlipid, n ¼ 8). Hepatic IL-10 tissue concentration served as primary outcome. Secondary outcomes were organ weights, bile flow, blood analyses, plasma insulin and glucagon concentrations, insulin signaling, proinflammatory cytokines, tissue lipopolysaccharide concentrations, and fatty acid composition of phospholipid fractions in plasma, liver, and brain.
Results
Total weight gain on trial, organ weights, and bile flow were similar between the Vegaven and the SMOFlipid group. Vegaven
elicited higher hepatic IL10 (Δ ¼ 148 pg/mg protein; P < 0.001) and insulin receptor substrate-2 amounts (Δ ¼ 0.08 OD; P ¼ 0.012).
Plasma insulin concentrations (Δ ¼ 1.46 mU/L; P ¼ 0.003) and fructosamine (glycated albumin, Δ ¼ 12.4 μmol/g protein; P ¼ 0.003)
were increased in SMOFlipid as compared with those of Vegaven group, indicating insulin resistance. Higher hepatic injury markers were observed more frequently in the SMOFlipid group than those in the Vegaven group. Lipopolysaccharide, tumor necrosis factor-α, and IL-6 concentrations increased in pancreatic and brain tissues of SMOFlipid-treated compared with those in the Vegaven-treated piglets. Insulin signaling reduced in the brains of SMOFlipid-treated piglets. Vegaven and SMOFlipid elicited distinct fatty acid profiles in the phospholipid fractions of the rapidly growing brains but showed similar accretion of docosahexaenoic acid and arachidonic acid after 2 wk of PN.
Conclusions
Vegaven is well tolerated in this piglet model of PN, demonstrating distinct biological actions compared with SMOFlipid,
namely lower liver, pancreas, and brain inflammation, enhanced insulin signaling, and improved whole body glucose control
Reduced Body Weight and Increased Energy Expenditure in Transgenic Mice Over-Expressing Soluble Leptin Receptor
studies have shown that OBRe expression is inversely correlated to body weight and leptin levels. However, it is not clear whether OBRe plays an active role, either in collaboration with leptin or independently, in the maintenance of body weight.To investigate the function of OBRe in the regulation of energy homeostasis, we generated transgenic mice that express OBRe under the control of human serum amyloid P (hSAP) component gene promoter. The transgene led to approximately doubling of OBRe in circulation in the transgenic mice than in wild type control mice. Transgenic mice exhibited lower body weight at 4 weeks of age, and slower rate of weight gain when compared with control mice. Furthermore, transgenic mice had lower body fat content. Indirect calorimetry revealed that transgenic mice had reduced food intake, increased basal metabolic rate, and increased lipid oxidation, which could account for the differences in body weight and body fat content. Transgenic mice also showed higher total circulating leptin, with the majority of it being in the bound form, while the amount of free leptin is comparable between transgenic and control mice.These results are consistent with the role of OBRe as a leptin binding protein in regulating leptin's bioavailability and activity
Alterations in fatty acid metabolism and sirtuin signaling characterize early type‐2 diabetic hearts of fructose‐fed rats
Despite the fact that skeletal muscle insulin resistance is the hallmark of type-2 diabetes mellitus (T2DM), inflexibility in substrate energy metabolism has been observed in other tissues such as liver, adipose tissue, and heart. In the heart, structural and functional changes ultimately lead to diabetic cardiomyopathy. However, little is known about the early biochemical changes that cause cardiac metabolic dysregulation and dysfunction. We used a dietary model of fructose-induced T2DM (10% fructose in drinking water for 6 weeks) to study cardiac fatty acid metabolism in early T2DM and related signaling events in order to better understand mechanisms of disease. In early type-2 diabetic hearts, flux through the fatty acid oxidation pathway was increased as a result of increased cellular uptake (CD36), mitochondrial uptake (CPT1B), as well as increased b-hydroxyacyl-CoA dehydrogenase and medium-chain acyl-CoA dehydrogenase activities, despite reduced mitochondrial mass. Long-chain acyl-CoA dehydrogenase activity was slightly decreased, resulting in the accumulation of long-chain acylcarnitine species. Cardiac function and overall mitochondrial respiration were unaffected. However, evidence of oxidative stress and subtle changes in cardiolipin content and composition were found in early type-2 diabetic mitochondria. Finally, we observed decreased activity of SIRT1, a pivotal regulator of fatty acid metabolism, despite increased protein levels. This indicates that the heart is no longer capable of further increasing its capacity for fatty acid oxidation. Along with increased oxidative stress, this may represent one of the earliest signs of dysfunction that will ultimately lead to inflammation and remodeling in the diabetic heart
Diabetic Rat Hearts Show More Favorable Metabolic Adaptation to Omegaven Containing High Amounts of n3 Fatty Acids Than Intralipid Containing n6 Fatty Acids
Background: While Omegaven, an omega-3 (n3) fatty acid-based lipid emulsion, fosters insulin signaling in healthy hearts, it is unknown whether beneficial metabolic effects occur in insulin-resistant diabetic hearts.
Methods: Diabetic hearts from fructose-fed Sprague-Dawley rats were perfused in the working mode for 90 minutes in the presence of 11 mM glucose and 1.2 mM palmitate bound to albumin, the first 30 minutes without insulin followed by 60 minutes with insulin (50 mU/L). Hearts were randomly allocated to Intralipid (25 and 100 µM), Omegaven (25 and 100 µM), or no emulsion (insulin alone) for 60 minutes. Glycolysis, glycogen synthesis, and glucose oxidation were measured with the radioactive tracers [5-H]glucose and [U-C]glucose. Central carbon metabolites, acyl-coenzyme A species (acyl-CoAs), ketoacids, purines, phosphocreatine, acylcarnitines, and acyl composition of phospholipids were measured with mass spectrometry.
Results: Diabetic hearts showed no response to insulin with regard to glycolytic flux, consistent with insulin resistance. Addition of either lipid emulsion did not alter this response but unexpectedly increased glucose oxidation (ratio of treatment/baseline, ie, fold change): no insulin 1.3 (0.3) [mean (standard deviation)], insulin alone 1.4 (0.4), insulin + 25 µM Intralipid 1.8 (0.5), insulin + 100 µM Intralipid 2.2 (0.4), P < .001; no insulin 1.3 (0.3), insulin alone 1.4 (0.4), insulin + 25 µM Omegaven 2.3 (0.5) insulin + 100 µM Omegaven 1.9 (0.4), P < .001. Intralipid treatment led to accumulation of acylcarnitines as a result of the released linoleic acid (C18:2-n6) and enhanced its integration into phospholipids, consistent with incomplete or impaired β-oxidation necessitating a compensatory increase in glucose oxidation. Accumulation of acylcarnitines was also associated with a higher nicotinamide adenine dinucleotide reduced/oxidized (NADH/NAD) ratio, which inhibited pyruvate dehydrogenase (PDH), and resulted in excess lactate production. In contrast, Omegaven-treated hearts showed no acylcarnitine accumulation, low malonyl-CoA concentrations consistent with activated β-oxidation, and elevated PDH activity and glucose oxidation, together indicative of a higher metabolic rate possibly by substrate cycling.
Conclusions: Omegaven is the preferred lipid emulsion for insulin-resistant diabetic hearts
Postconditioning with Intralipid emulsion protects against reperfusion injury in post-infarct remodeled rat hearts by activation of ROS-Akt/Erk signaling
Differential Effects of Anesthetics and Opioid Receptor Activation on Cardioprotection Elicited by Reactive Oxygen Species–Mediated Postconditioning in Sprague-Dawley Rat Hearts
- …
