13 research outputs found
MOLECULAR DOCKING STUDY ON 1H-(3,4d) PYRAZOLO-PYRIMIDINES AS CYCLIN DEPENDANT KINASE (CDK2) INHIBITORS
Objective: CDK2 inhibitors are implicated in several carcinomas viz. Carcinoma of lung, bladder, sarcomas and retinoblastoma. Pyrazolopyrimidines, being purine bioisosters inhibit more than one type of kinase. In this study, we are studying some novel derivatives of 1H-pyrazolo [3,4d] pyrimidines not reported earlier. The objective of the present study is an attempt towards design and development of 1H-[3,4-] pyrazolo-pyrimidines as CDK2 inhibitors through rational drug design.Methods: The present study has been done on CDK2 structure, PDB ID, 3WBL, co-crystallized with ligand PDY from RCSB protein data bank. A series of seventeen 1H-Pyrazolo [3,4-d] pyrimidines feasible for synthesis was docked on the said CDK2 receptor using Auto Dock 4 version, 1.5.6. Outputs were exported to discovery studio 3.5 client for visual inspection of the binding modes and interactions of the compounds with amino acid residues in the active sites.Results: The results of docking studies revealed that the present series of 1H-Pyrazolo[3,4-d] pyrimidines is showing significant binding through hydrogen bonding, hydrophobic, pi and Van der waals interactions, similar to the ligand PDY. Some conserved H-bond interactions comparable to bioisosters and compounds presently under human trials were noted. Ki values predicted in silico also suggest that the series will show promising CDK2 inhibitory activity.Conclusion: The series designed and docked can be further developed by synthesis and in vitro and in vivo activity. The receptor inhibitory activity can also be checked by specific receptor assays
Simple oxidation of pyrimidinylhydrazones to triazolopyrimidines and their inhibition of Shiga toxin trafficking
The oxidative cyclisation of a range of benzothieno[2,3-d]pyrimidine hydrazones (7a–j) to the 1,2,4-triazolo[4,3-c]pyrimidines (8a–j) catalysed by lithium iodide or to the 1,2,4-triazolo[1,5-c]pyrimidines (10a–j) with sodium carbonate is presented. A complementary synthesis of the 1,2,4-triazolo[1,5-c]pyrimidines starting from the amino imine 11 is also reported. The effect of these compounds on Shiga toxin (STx) trafficking in HeLa cells and comparison to the previously reported Exo2 is also detailed
MOLECULAR DOCKING STUDY ON 1H-(3,4d) PYRAZOLO-PYRIMIDINES AS CYCLIN DEPENDANT KINASE (CDK2) INHIBITORS
Objective: CDK2 inhibitors are implicated in several carcinomas viz. Carcinoma of lung, bladder, sarcomas and retinoblastoma. Pyrazolopyrimidines, being purine bioisosters inhibit more than one type of kinase. In this study, we are studying some novel derivatives of 1H-pyrazolo [3,4d] pyrimidines not reported earlier. The objective of the present study is an attempt towards design and development of 1H-[3,4-] pyrazolo-pyrimidines as CDK2 inhibitors through rational drug design.Methods: The present study has been done on CDK2 structure, PDB ID, 3WBL, co-crystallized with ligand PDY from RCSB protein data bank. A series of seventeen 1H-Pyrazolo [3,4-d] pyrimidines feasible for synthesis was docked on the said CDK2 receptor using Auto Dock 4 version, 1.5.6. Outputs were exported to discovery studio 3.5 client for visual inspection of the binding modes and interactions of the compounds with amino acid residues in the active sites.Results: The results of docking studies revealed that the present series of 1H-Pyrazolo[3,4-d] pyrimidines is showing significant binding through hydrogen bonding, hydrophobic, pi and Van der waals interactions, similar to the ligand PDY. Some conserved H-bond interactions comparable to bioisosters and compounds presently under human trials were noted. Ki values predicted in silico also suggest that the series will show promising CDK2 inhibitory activity.Conclusion: The series designed and docked can be further developed by synthesis and in vitro and in vivo activity. The receptor inhibitory activity can also be checked by specific receptor assays.</jats:p
Stability Indicating HPLC Method for Simultaneous Determination of Mephenesin and Diclofenac Diethylamine
A simple, specific, accurate and stability-indicating reversed phase high performance liquid chromatographic method was developed for the simultaneous determination of mephenesin and diclofenac diethylamine, using a Spheri-5-RP-18 column and a mobile phase composed of methanol: water (70:30, v/v), pH 3.0 adjusted with o-phosphoric acid. The retention times of mephenesin and diclofenac diethylamine were found to be 3.9 min and 14.5 min, respectively. Linearity was established for mephenesin and diclofenac diethylamine in the range of 50-300 μg/ml and 10-60 μg/ml, respectively. The percentage recoveries of mephenesin and diclofenac diethylamine were found to be in the range of 99.06-100.60% and 98.95-99.98%, respectively. Both the drugs were subjected to acid, alkali and neutral hydrolysis, oxidation, dry heat, photolytic and UV degradation. The degradation studies indicated, mephenesin to be susceptible to neutral hydrolysis, while diclofenac diethylamine showed degradation in acid, H2O2, photolytic and in presence of UV radiation. The degradation products of diclofenac diethylamine in acidic and photolytic conditions were well resolved from the pure drug with significant differences in their retention time values. This method can be successfully employed for simultaneous quantitative analysis of mephenesin and diclofenac diethylamine in bulk drugs and formulations
Synthesis and biological evaluation of novel condensed pyrimidinylmethylsulfinylbenzimidazoles as antiulcer agent
Synthesis and antihyperlipidemic activity of novel condensed 2-fluoromethylpyrimidines
POCl 3 catalyzed, one-step, solvent-free synthesis of some novel thieno[2,3- d ]pyrimidin-4(3 H )-one derivatives as antimicrobial agent
A POCl3 catalyzed, efficient, one-step and solvent-free synthesis of novel thieno[2,3-d]pyrimidin-4(3H)-one derivatives from 2-amino-4,5-substitutedthiophene-3-carbonitrile has been developed under conventional heating and microwave irradiation. The formation of compounds was confirmed using elemental analysis and spectroscopic techniques like IR, NMR (1H and 13C) and mass spectroscopy. Furthermore, they were screened in vitro to study their antimicrobial activity, which shows weak to moderate activity against all tested microorganisms
