1,505 research outputs found
Analysis of circadian rhythms from online communities of individuals with affective disorders
The circadian system regulates 24 hour rhythms in biological creatures. It impacts mood regulation. The disruptions of circadian rhythms cause destabilization in individuals with affective disorders, such as depression and bipolar disorders. Previous work has examined the role of the circadian system on effects of light interactions on mood-related systems, the effects of light manipulation on brain, the impact of chronic stress on rhythms. However, such studies have been conducted in small, preselected populations. The deluge of data is now changing the landscape of research practice. The unprecedented growth of social media data allows one to study individual behavior across large and diverse populations. In particular, individuals with affective disorders from online communities have not been examined rigorously. In this paper, we aim to use social media as a sensor to identify circadian patterns for individuals with affective disorders in online communities.We use a large scale study cohort of data collecting from online affective disorder communities. We analyze changes in hourly, daily, weekly and seasonal affect of these clinical groups in contrast with control groups of general communities. By comparing the behaviors between the clinical groups and the control groups, our findings show that individuals with affective disorders show a significant distinction in their circadian rhythms across the online activity. The results shed light on the potential of using social media for identifying diurnal individual variation in affective state, providing key indicators and risk factors for noninvasive wellbeing monitoring and prediction
Pressurized water reactor loss-of-coolant accidents by hypothetical vessel rupture
Also issued by the 1st author as an Sc. D. thesis, Massachusetts Institute of Technology. Dept. of Nuclear Engineering, 1972Includes bibliographical references (leaves 331-349
Adjusting Overall Survival Estimates after Treatment Switching: a Case Study in Metastatic Castration-Resistant Prostate Cancer
Background
If patients in oncology trials receive subsequent therapy, standard intention-to-treat (ITT) analyses may inaccurately estimate the overall survival (OS) effect of the investigational product. In this context, a post-hoc analysis of the phase 3 PREVAIL study was performed with the aim to compare enzalutamide with placebo in terms of OS, adjusting for potential confounding from switching to antineoplastic therapies that are not part of standard metastatic castration-resistant prostate cancer (mCRPC) treatment pathways in some jurisdictions.
Methods
The PREVAIL study, which included 1717 chemotherapy-naïve men with mCRPC randomized to treatment with enzalutamide 160 mg/day or placebo, was stopped after a planned interim survival analysis revealed a benefit in favor of enzalutamide. Data from this cutoff point were confounded by switching from both arms and so were evaluated in terms of OS using two switching adjustment methods: the two-stage accelerated failure time model (two-stage method) and inverse probability of censoring weights (IPCW).
Results
Following adjustment for switching to nonstandard antineoplastic therapies by 14.8 (129/872 patients) and 21.3% (180/845 patients) of patients initially randomized to enzalutamide and placebo, respectively, the two-stage and IPCW methods both resulted in numerical reductions in the hazard ratio (HR) for OS [HR 0.66, 95% confidence interval (CI) 0.57–0.81 and HR 0.63, 95% CI 0.52–0.75, respectively] for enzalutamide compared to placebo versus the unadjusted ITT analysis (HR 0.71, 95% CI 0.60–0.84). These results suggest a slightly greater effect of enzalutamide on OS than originally reported.
Conclusion
In the PREVAIL study, switching to nonstandard antineoplastic mCRPC therapies resulted in the ITT analysis of primary data underestimating the benefit of enzalutamide on OS
A P-type ATPase importer that discriminates between essential and toxic transition metals
Transition metals, although being essential cofactors in many physiological processes, are toxic at elevated concentrations. Among the membrane-embedded transport proteins that maintain appropriate intracellular levels of transition metals are ATP-driven pumps belonging to the P-type ATPase superfamily. These metal transporters may be differentiated according to their substrate specificities, where the majority of pumps can extrude either silver and copper or zinc, cadmium, and lead. In the present report, we have established the substrate specificities of nine previously uncharacterized prokaryotic transition-metal P-type ATPases. We find that all of the newly identified exporters indeed fall into one of the two above-mentioned categories. In addition to these exporters, one importer, Pseudomonas aeruginosa Q9I147, was also identified. This protein, designated HmtA (heavy metal transporter A), exhibited a different substrate recognition profile from the exporters. In vivo metal susceptibility assays, intracellular metal measurements, and transport experiments all suggest that HmtA mediates the uptake of copper and zinc but not of silver, mercury, or cadmium. The substrate selectivity of this importer ensures the high-affinity uptake of essential metals, while avoiding intracellular contamination by their toxic counterparts
Shigella flexneri serotype 1c derived from serotype 1a by acquisition of gtrIC gene cluster via a bacteriophage
BACKGROUND:
Shigella spp. are the primary causative agents of bacillary dysentery. Since its emergence in the late 1980s, the S. flexneri serotype 1c remains poorly understood, particularly with regard to its origin and genetic evolution. This article provides a molecular insight into this novel serotype and the gtrIC gene cluster that determines its unique immune recognition.
RESULTS:
A PCR of the gtrIC cluster showed that serotype 1c isolates from different geographical origins were genetically conserved. An analysis of sequences flanking the gtrIC cluster revealed remnants of a prophage genome, in particular integrase and tRNAPro genes. Meanwhile, Southern blot analyses on serotype 1c, 1a and 1b strains indicated that all the tested serotype 1c strains may have had a common origin that has since remained distinct from the closely related 1a and 1b serotypes. The identification of prophage genes upstream of the gtrIC cluster is consistent with the notion of bacteriophage-mediated integration of the gtrIC cluster into a pre-existing serotype.
CONCLUSIONS:
This is the first study to show that serotype 1c isolates from different geographical origins share an identical pattern of genetic arrangement, suggesting that serotype 1c strains may have originated from a single parental strain. Analysis of the sequence around the gtrIC cluster revealed a new site for the integration of the serotype converting phages of S. flexneri. Understanding the origin of new pathogenic serotypes and the molecular basis of serotype conversion in S. flexneri would provide information for developing cross-reactive Shigella vaccines
Selective modulation of P-glycoprotein activity by steroidal saponines from Paris polyphylla
Bio-guided fractionation of the roots of Paris polyphylla (Trilliaceae), based on inhibition of P-glycoprotein-mediated daunorubicin efflux in K562/R7 cell line, led to isolation and identification of the three saponins 3-O-Rha(1 → 2)[Ara(1 → 4)]Glc-pennogenine, gracillin and polyphyllin D, and the two ecdysteroids 20-hydroxyecdysone and pinnatasterone. These compounds were tested for multidrug reversion on P-glycoprotein (ABCB1) with both drug-selected and transfected cell lines, and also on Breast Cancer Resistance Protein (BCRP/ABCG2). By contrast to a weak efficiency on BCRP, the three saponins displayed significant effects as inhibitors of P-glycoprotein-mediated drug efflux
Influence of Hydrodynamic Interactions on Mechanical Unfolding of Proteins
We incorporate hydrodynamic interactions in a structure-based model of
ubiquitin and demonstrate that the hydrodynamic coupling may reduce the peak
force when stretching the protein at constant speed, especially at larger
speeds. Hydrodynamic interactions are also shown to facilitate unfolding at
constant force and inhibit stretching by fluid flows.Comment: to be published in Journal of Physics: Condensed Matte
- …
