162 research outputs found

    Manipulating Z2 and Chern topological phases in a single material using periodically driving fields

    Get PDF
    Z2Z_{2} and Chern topological phases such as newly discovered quantum spin Hall and original quantum Hall states hardly both co--exist in a single material due to their contradictory requirement on the time--reversal symmetry (TRS). We show that although the TRS is broken in systems with a periodically driving ac-field, an effective TRS can still be defined provided the ac--field is linearly polarized or certain other conditions are satisfied. The controllable TRS provides us with a route to manipulate Z2Z_{2} and Chern topological phases in a single material by tuning the polarization of the ac--field. To demonstrate the idea, we consider a generic honeycomb lattice model as a benchmark system that is relevant to electronic structures of several monolayered materials. Our calculation shows that not only the transitions between Z2Z_{2} and Chern phases can be induced but also features such as the dispersion of the edge states can be controlled. This opens the possibility of manipulating various topological phases in a single material and can be a promising approach to engineer some new electronic states of matter.Comment: 5 pages, 3 figures, 1 supplementary material (2 pages

    Anisotropic Multipolar Exchange Interactions in Systems with Strong Spin-Orbit Coupling

    Full text link
    We introduce a theoretical framework for computaions of anisotropic multipolar exchange interactions found in many spin--orbit coupled magnetic systems and propose a method to extract these coupling constants using a density functional total energy calculation. This method is developed using a multipolar expansion of local density matrices for correlated orbitals that are responsible for magnetic degrees of freedom. Within the mean--field approximation, we show that each coupling constant can be recovered from a series of total energy calculations via what we call the ``pair--flip'' technique. This technique flips the relative phase of a pair of multipoles and computes corresponding total energy cost associated with the given exchange constant. To test it, we apply our method to Uranium Dioxide, which is a system known to have pseudospin J=1J=1 superexchange induced dipolar, and superexchange plus spin--lattice induced quadrupolar orderings. Our calculation reveals that the superexchange and spin--lattice contributions to the quadrupolar exchange interactions are about the same order with ferro-- and antiferro--magnetic contributions, respectively. This highlights a competition rather than a cooperation between them. Our method could be a promising tool to explore magnetic properties of rare--earth compounds and hidden--order materials.Comment: 10 pages, 10 figure

    New class of 3D topological insulator in double perovskite

    Full text link
    We predict a new class of three-dimensional topological insulators (TIs) in which the spin-orbit coupling (SOC) can more effectively generate a large band gap at Γ\Gamma point. The band gap of conventional TI such as Bi2_2Se3_3 is mainly limited by two factors, the strength of SOC and, from electronic structure perspective, the band gap when SOC is absent. While the former is an atomic property, we find that the latter can be minimized in a generic rock-salt lattice model in which a stable crossing of bands {\it at} the Fermi level along with band character inversion occurs for a range of parameters in the absence of SOC. Thus, large-gap TI's or TI's comprised of lighter elements can be expected. In fact, we find by performing first-principle calculations that the model applies to a class of double perovskites A2_2BiXO6_6 (A = Ca, Sr, Ba; X = Br, I) and the band gap is predicted up to 0.55 eV. Besides, more detailed calculations considering realistic surface structure indicate that the Dirac cones are robust against the presence of dangling bond at the boundary with a specific termination.Comment: submitted; title changed and new references added; see DOI for published versio

    Serologic and Molecular Biologic Methods for SARS-associated Coronavirus Infection, Taiwan

    Get PDF
    Severe acute respiratory syndrome (SARS) has raised a global alert since March 2003. After its causative agent, SARS-associated coronavirus (SARS-CoV), was confirmed, laboratory methods, including virus isolation, reverse transcriptase–polymerase chain reaction (RT-PCR), and serologic methods, have been quickly developed. In this study, we evaluated four serologic tests ( neutralization test, enzyme-linked immunosorbent assay [ELISA], immunofluorescent assay [IFA], and immunochromatographic test [ICT]) for detecting antibodies to SARS-CoV in sera of 537 probable SARS case-patients with correlation to the RT-PCR . With the neutralization test as a reference method, the sensitivity, specificity, positive predictive value, and negative predictive value were 98.2%, 98.7%, 98.7%, and 98.4% for ELISA; 99.1%, 87.8%, 88.1% and 99.1% for IFA; 33.6%, 98.2%, 95.7%, and 56.1% for ICT, respectively. We also compared the recombinant-based western blot with the whole virus–based IFA and ELISA; the data showed a high correlation between these methods, with an overall agreement of >90%. Our results provide a systematic analysis of serologic and molecular methods for evaluating SARS-CoV infection

    Shedding light on local kinase activation

    Get PDF
    Phosphorylation is the predominant language of cell signaling. And, as with any common language, an abundance of dialects has evolved to convey complex information. We discuss here how biosensors are being used to decode this language, affording an unprecedented glimpse into spatio-temporal patterns of protein phosphorylation events within the cell

    Discutindo a educação ambiental no cotidiano escolar: desenvolvimento de projetos na escola formação inicial e continuada de professores

    Get PDF
    A presente pesquisa buscou discutir como a Educação Ambiental (EA) vem sendo trabalhada, no Ensino Fundamental e como os docentes desta escola compreendem e vem inserindo a EA no cotidiano escolar., em uma escola estadual do município de Tangará da Serra/MT, Brasil. Para tanto, realizou-se entrevistas com os professores que fazem parte de um projeto interdisciplinar de EA na escola pesquisada. Verificou-se que o projeto da escola não vem conseguindo alcançar os objetivos propostos por: desconhecimento do mesmo, pelos professores; formação deficiente dos professores, não entendimento da EA como processo de ensino-aprendizagem, falta de recursos didáticos, planejamento inadequado das atividades. A partir dessa constatação, procurou-se debater a impossibilidade de tratar do tema fora do trabalho interdisciplinar, bem como, e principalmente, a importância de um estudo mais aprofundado de EA, vinculando teoria e prática, tanto na formação docente, como em projetos escolares, a fim de fugir do tradicional vínculo “EA e ecologia, lixo e horta”.Facultad de Humanidades y Ciencias de la Educació

    stairs and fire

    Get PDF
    corecore