481 research outputs found
Deuterated molecules in DM Tau: DCO+, but no HDO
We report the detection of the J=2-1 line of DCO+ in the proto-planetary disk
of DM Tau and re-analyze the spectrum covering the 465 GHz transition of HDO in
this source, recently published by Ceccarelli et al. (2005). A modelling of the
DCO+ line profile with the source parameters derived from high resolution HCO+
observations yields a DCO+/HCO+ abundance ratio of about 0.004, an order of
magnitude smaller than that derived in the low mass cores. The re-analysis of
the 465 GHz spectrum, using the proper continuum flux (0.5 Jy) and source
systemic velocity (6.05 km/s), makes it clear that the absorption features
attributed to HDO and C6H are almost certainly unrelated to these species. We
show that the line-to-continuum ratio of an absorption line in front of a
Keplerian disk can hardly exceed the ratio of the turbulent velocity to the
projected rotation velocity at the disk edge, unless the line is optically very
thick (tau > 10 000). This ratio is typically 0.1-0.3 in proto-planetary disks
and is about 0.15 in DM Tau, much smaller than that for the alleged absorption
features. We also show that the detection of H2D+ in DM Tau, previously
reported by these authors, is only a 2-sigma detection when the proper velocity
is adopted. So far, DCO+ is thus the only deuterated molecule clearly detected
in proto-planetary disks
Les maux et les mots de la précarité et de l'exclusion en France au XXe siècle
International audienceThe torments and speeches about precariousness and exclusion in France in the 20th century This article sums up the book Les maux et les mots de la précarité et de l'exclusion en France au XXe siècle, published under the supervision of André Gueslin and Henri-Jacques Stiker. It followed a two-day seminar held in May 2011 at the University Paris Diderot. Eleven researchers highlight the many aspects of precariousness and analyze the social exclusion process. They study different features of vulnerable populations. The authors focus on the rhetoric of both the outcasts and their relations. The different players involved, especially the State, have a large part in this study.Cet article se propose de faire le compte rendu de l'ouvrage collectif Les maux et les mots de la précarité et de l'exclusion en France au XXe siècle, rédigé sous la direction d'André Gueslin et d'Henri-Jacques Stiker. Il fait suite à deux journées d'étude qui se sont tenues en mai 2011 à l'Université Paris Diderot. Onze chercheurs soulignent le caractère multi facettes de l'exclusion et de la précarité et analysent les processus qui fondent l'exclusion. On observe ainsi différents visages de ces populations fragilisées. Les auteurs se sont intéressés à la parole de l'exclu et de ceux qui le côtoient ou le désignent. Les différents acteurs, et en particulier l'État, occupent une place importante dans ces études
A sensitive survey for 13CO, CN, H2CO and SO in the disks of T Tauri and Herbig Ae stars
We use the IRAM 30-m telescope to perform a sensitive search for CN N=2-1 in
42 T Tauri or Herbig Ae systems located mostly in the Taurus-Auriga region.
CO J=2-1 is observed simultaneously to indicate the level of confusion
with the surrounding molecular cloud. The bandpass also contains two
transitions of ortho-HCO, one of SO and the CO J=2-1 line which
provide complementary information on the nature of the emission.
While CO is in general dominated by residual emission from the cloud,
CN exhibits a high disk detection rate % in our sample. We even report CN
detection in stars for which interferometric searches failed to detect
CO, presumably because of obscuration by a foreground, optically thick,
cloud. Comparison between CN and o-HCO or SO line profiles and intensities
divide the sample in two main categories. Sources with SO emission are bright
and have strong HCO emission, leading in general to [HCO/CN].
Furthermore, their line profiles, combined with a priori information on the
objects, suggest that the emission is coming from outflows or envelopes rather
than from a circumstellar disk. On the other hand, most sources have
[HCO/CN], no SO emission, and some of them exhibit clear
double-peaked profiles characteristics of rotating disks. In this second
category, CN is likely tracing the proto-planetary disks. From the line flux
and opacity derived from the hyperfine ratios, we constrain the outer radii of
the disks, which range from 300 to 600 AU. The overall gas disk detection rate
(including all molecular tracers) is , and decreases for fainter
continuum sources.
This study shows that gas disks, like dust disks, are ubiquitous around young
PMS stars in regions of isolated star formation, and that a large fraction of
them have AU.Comment: 31 pages (including 59 figures
Searching for sub-stellar companion into the LkCa15 proto-planetary disk
Recent sub-millimetric observations at the Plateau de Bure interferometer
evidenced a cavity at ~ 46 AU in radius into the proto-planetary disk around
the T Tauri star LkCa15 (V1079 Tau), located in the Taurus molecular cloud.
Additional Spitzer observations have corroborated this result possibly
explained by the presence of a massive (>= 5 MJup) planetary mass, a brown
dwarf or a low mass star companion at about 30 AU from the star. We used the
most recent developments of high angular resolution and high contrast imaging
to search directly for the existence of this putative companion, and to bring
new constraints on its physical and orbital properties. The NACO adaptive
optics instrument at VLT was used to observe LkCa15 using a four quadrant phase
mask coronagraph to access small angular separations at relatively high
contrast. A reference star at the same parallactic angle was carefully observed
to optimize the quasi-static speckles subtraction (limiting our sensitivity at
less than 1.0). Although we do not report any positive detection of a faint
companion that would be responsible for the observed gap in LkCa15's disk
(25-30 AU), our detection limits start constraining its probable mass,
semi-major axis and eccentricity. Using evolutionary model predictions, Monte
Carlo simulations exclude the presence of low eccentric companions with masses
M >= 6 M Jup and orbiting at a >= 100 AU with significant level of confidence.
For closer orbits, brown dwarf companions can be rejected with a detection
probability of 90% down to 80 AU (at 80% down to 60 AU). Our detection limits
do not access the star environment close enough to fully exclude the presence
of a brown dwarf or a massive planet within the disk inner activity (i.e at
less than 30 AU). Only, further and higher contrast observations should unveil
the existence of this putative companion inside the LkCa15 disk.Comment: 6 pages, 4 figures, accepted for publication in A&
Sensitive survey for 13CO, CN, H2CO, and SO in the disks of T Tauri and Herbig Ae stars II: Stars in Oph and upper Scorpius
We attempt to determine the molecular composition of disks around young
low-mass stars in the Oph region and to compare our results with a
similar study performed in the Taurus-Auriga region. We used the IRAM 30 m
telescope to perform a sensitive search for CN N=2-1 in 29 T Tauri stars
located in the Oph and upper Scorpius regions. CO J=2-1 is
observed simultaneously to provide an indication of the level of confusion with
the surrounding molecular cloud. The bandpass also contains two transitions of
ortho-HCO, one of SO, and the CO J=2-1 line, which provides
complementary information on the nature of the emission. Contamination by
molecular cloud in CO and even CO is ubiquitous. The CN detection
rate appears to be lower than for the Taurus region, with only four sources
being detected (three are attributable to disks). HCO emission is found
more frequently, but appears in general to be due to the surrounding cloud. The
weaker emission than in Taurus may suggest that the average disk size in the
Oph region is smaller than in the Taurus cloud. Chemical modeling shows
that the somewhat higher expected disk temperatures in Oph play a direct
role in decreasing the CN abundance. Warmer dust temperatures contribute to
convert CN into less volatile forms. In such a young region, CN is no longer a
simple, sensitive tracer of disks, and observations with other tracers and at
high enough resolution with ALMA are required to probe the gas disk population.Comment: 18 pages, 5 figures, accepted for publication in A&
Millimeter imaging of HD 163296: probing the disk structure and kinematics
We present new multi-wavelength millimeter interferometric observations of
the Herbig Ae star HD 163296 obtained with the IRAM/PBI, SMA and VLA arrays
both in continuum and in the 12CO, 13CO and C18O emission lines. Gas and dust
properties have been obtained comparing the observations with self-consistent
disk models for the dust and CO emission. The circumstellar disk is resolved
both in the continuum and in CO. We find strong evidence that the circumstellar
material is in Keplerian rotation around a central star of 2.6 Msun. The disk
inclination with respect to the line of sight is 46+-4 deg with a position
angle of 128+-4 deg. The slope of the dust opacity measured between 0.87 and 7
mm (beta=1) confirms the presence of mm/cm-size grains in the disk midplane.
The dust continuum emission is asymmetric and confined inside a radius of 200
AU while the CO emission extends up to 540 AU. The comparison between dust and
CO temperature indicates that CO is present only in the disk interior. Finally,
we obtain an increasing depletion of CO isotopomers from 12CO to 13CO and C18O.
We argue that these results support the idea that the disk of HD 163296 is
strongly evolved. In particular, we suggest that there is a strong depletion of
dust relative to gas outside 200 AU; this may be due to the inward migration of
large bodies that form in the outer disk or to clearing of a large gap in the
dust distribution by a low mass companion.Comment: Accepted for publication on A&A, 16 page
Resolving the inner dust disks surrounding LkCa 15 and MWC 480 at mm wavelengths
International audienceWe performed sub-arcsecond high-sensitivity nterferometric observations of the thermal dust emission at 1.4 mm and 2.8 mm in the disks surrounding LkCa 15 and MWC 480, with the new 750 m baselines of the IRAM PdBI array. This provides a linear resolution of about 60 AU at the Taurus distance. We report the existence of a cavity of about 50 AU radius in the inner disk of LkCa 15. Whereas LkCa 15 emission is optically thin, the optically thick core of MWC 480 is resolved at 1.4 mm with a radius of about 35 AU, constraining the dust temperature. In MWC 480, the dust emission is coming from a colder layer than the CO emission, most likely the disk mid-plane. These observations provide direct evidence of an inner cavity around LkCa 15. Such a cavity most probably results from the tidal disturbance created by a low mass companion or large planet at about 30 AU from the star. These results suggest that planetary system formation is already at work in LkCa 15. They also indicate that the classical steady-state viscous disk model is a too simplistic description of the inner 50 AU of ''proto-planetary'' disks, and that the disk evolution is coupled to the planet formation process. The MWC 480 results indicate that a proper estimate of the dust temperature and size of the optically thick core are essential to determine the dust emissivity index
Dynamical Masses of Low Mass Stars in the Taurus and Ophiuchus Star Forming Regions
We report new dynamical masses for 5 pre-main sequence (PMS) stars in the
L1495 region of the Taurus star-forming region (SFR) and 6 in the L1688 region
of the Ophiuchus SFR. Since these regions have VLBA parallaxes these are
absolute measurements of the stars' masses and are independent of their
effective temperatures and luminosities. Seven of the stars have masses
solar masses, thus providing data in a mass range with little data, and of
these, 6 are measured to precision . We find 8 stars with masses in the
range 0.09 to 1.1 solar mass that agree well with the current generation of PMS
evolutionary models. The ages of the stars we measured in the Taurus SFR are in
the range 1-3 MY, and MY for those in L1688. We also measured the
dynamical masses of 14 stars in the ALMA archival data for Akeson~\&~Jensen's
Cycle 0 project on binaries in the Taurus SFR. We find that the masses of 7 of
the targets are so large that they cannot be reconciled with reported values of
their luminosity and effective temperature. We suggest that these targets are
themselves binaries or triples.Comment: 20 page
Chemistry in Disks. II. -- Poor molecular content of the AB Aur disk
We study the molecular content and chemistry of a circumstellar disk
surrounding the Herbig Ae star AB Aur at (sub-)millimeter wavelengths. Our aim
is to reconstruct the chemical history and composition of the AB Aur disk and
to compare it with disks around low-mass, cooler T Tauri stars. We observe the
AB Aur disk with the IRAM Plateau de Bure Interferometer in the C- and D-
configurations in rotational lines of CS, HCN, C2H, CH3OH, HCO+, and CO
isotopes. Using an iterative minimization technique, observed columns densities
and abundances are derived. These values are further compared with results of
an advanced chemical model that is based on a steady-state flared disk
structure with a vertical temperature gradient, and gas-grain chemical network
with surface reactions. We firmly detect HCO+ in the 1--0 transition,
tentatively detect HCN, and do not detect CS, C2H, and CH3OH. The observed HCO+
and 13CO column densities as well as the upper limits to the column densities
of HCN, CS, C2H, and CH3OH are in good agreement with modeling results and
those from previous studies. The AB Aur disk possesses more CO, but is less
abundant in other molecular species compared to the DM Tau disk. This is
primarily caused by intense UV irradiation from the central Herbig A0 star,
which results in a hotter disk where CO freeze out does not occur and thus
surface formation of complex CO-bearing molecules might be inhibited.Comment: Accepted by A&
Sub-arcsec imaging of the AB Aur molecular disk and envelope at millimeter wavelengths: a non Keplerian disk
We present sub-arcsecond images of AB Auriga obtained with the IRAM Plateau
de Bure interferometer in the isotopologues of CO, and in continuum at 3 and
1.3 mm. Instead of being centrally peaked, the continuum emission is dominated
by a bright, asymmetric (spiral-like) feature at about 140 AU from the central
star. The large scale molecular structure suggests the AB Aur disk is inclined
between 23 and 43 degrees, but the strong asymmetry of the continuum and
molecular emission prevents an accurate determination of the inclination of the
inner parts. We find significant non-Keplerian motion, with a best fit exponent
for the rotation velocity law of 0.41 +/- 0.01, but no evidence for radial
motions. The disk has an inner hole about 70 AU in radius. The disk is warm and
shows no evidence of depletion of CO. The dust properties suggest the dust is
less evolved than in typical T Tauri disks. Both the spiral-like feature and
the departure from purely Keplerian motions indicates the AB Aur disk is not in
quasi-equilibrium. Disk self-gravity is insufficient to create the
perturbation. This behavior may be related either to an early phase of star
formation in which the Keplerian regime is not yet fully established and/or to
a disturbance of yet unknown origin. An alternate, but unproven, possibility is
that of a low mass companion located about 40 AU from AB Aur.Comment: 10 pages, 5 figures, accepted for publication in Astronomy &
Astrophysic
- …
