11,533 research outputs found

    Self-consistent Improvement of the Finite Temperature Effective Potential

    Full text link
    We present a self-consistent calculation of the finite temperature effective potential for λϕ4\lambda \phi^4 theory, using the composite operator effective potential in which an infinite series of the leading diagrams is summed up. Our calculation establishes the proper form of the leading correction to the perturbative one-loop effective potential.Comment: 19 pages, Plain Tex, (References completely reorganized and corresponding changes in the text. Also minor typo corrections. 4 figures still not included.

    About the oscillatory possibilities of the dynamical systems

    Full text link
    This paper attempts to make feasible the evolutionary emergence of novelty in a supposedly deterministic world which behavior is associated with those of the mathematical dynamical systems. The work was motivated by the observation of complex oscillatory behaviors in a family of physical devices, for which there is no known explanation in the mainstream of nonlinear dynamics. The paper begins by describing a nonlinear mechanism of oscillatory mode mixing explaining such behaviors and establishes a generic dynamical scenario with extraordinary oscillatory possibilities, including expansive growing scalability. The relation of the scenario to the oscillatory behaviors of turbulent fluids and living brains is discussed. Finally, by considering the scenario as a dynamic substrate underlying generic aspects of both the functioning and the genesis of complexity in a supposedly deterministic world, a theoretical framework covering the evolutionary development of structural transformations in the time evolution of that world is built up.Comment: 40 pages, 12 figures, to appear in Physica

    Optical response of two-dimensional few-electron concentric double quantum rings: A local-spin-density-functional theory study

    Get PDF
    We have investigated the dipole charge- and spin-density response of few-electron two-dimensional concentric nanorings as a function of the intensity of a perpendicularly applied magnetic field. We show that the dipole response displays signatures associated with the localization of electron states in the inner and outer ring favored by the perpendicularly applied magnetic field. Electron localization produces a more fragmented spectrum due to the appearance of additional edge excitations in the inner and outer ring.Comment: To be published in Physical Review

    Electronic structure of few-electron concentric double quantum rings

    Get PDF
    The ground state structure of few-electron concentric double quantum rings is investigated within the local spin density approximation. Signatures of inter-ring coupling in the addition energy spectrum are identified and discussed. We show that the electronic configurations in these structures can be greatly modulated by the inter-ring distance: At short and long distances the low-lying electron states localize in the inner and outer rings, respectively, and the energy structure is essentially that of an isolated single quantum ring. However, at intermediate distances the electron states localized in the inner and the outer ring become quasi-degenerate and a rather entangled, strongly-correlated system is formed.Comment: 16 pages (preprint format), 6 figure

    Novel software techniques for automatic microwave measurements

    Get PDF
    Although many microwave measurement techniques are heavily based on special purpose software, the application of modern software techniques like object oriented programming and new programming language like C++ is seldom used. The impact of such new software solutions can drastically improve the overall design of a microwave test set. The paper presents the design and implementation of a new multiport network analyzer with particular attention to the control program architecture. The use of Object Oriented Programming techniques results in a clear and easy to maintain solution which boosts both the user interface and the overall test set organizatio

    Mean field and pairing properties in the crust of neutron stars

    Get PDF
    Properties of the matter in the inner crust of a neutron star are investigated in a Hartree-Fock plus BCS approximation employing schematic effective forces of the type of the Skyrme forces. Special attention is paid to differences between a homogenous and inhomogeneous description of the matter distribution. For that purpose self-consistent Hartree Fock calculations are performed in a spherical Wigner-Seitz cell. The results are compared to predictions of corresponding Thomas Fermi calculations. The influence of the shell structure on the formation of pairing correlations in inhomogeneous matter are discussed.Comment: 11 pages, 9 figure

    Fundamentals of Heterogeneous Cellular Networks with Energy Harvesting

    Full text link
    We develop a new tractable model for K-tier heterogeneous cellular networks (HetNets), where each base station (BS) is powered solely by a self-contained energy harvesting module. The BSs across tiers differ in terms of the energy harvesting rate, energy storage capacity, transmit power and deployment density. Since a BS may not always have enough energy, it may need to be kept OFF and allowed to recharge while nearby users are served by neighboring BSs that are ON. We show that the fraction of time a k^{th} tier BS can be kept ON, termed availability \rho_k, is a fundamental metric of interest. Using tools from random walk theory, fixed point analysis and stochastic geometry, we characterize the set of K-tuples (\rho_1, \rho_2, ... \rho_K), termed the availability region, that is achievable by general uncoordinated operational strategies, where the decision to toggle the current ON/OFF state of a BS is taken independently of the other BSs. If the availability vector corresponding to the optimal system performance, e.g., in terms of rate, lies in this availability region, there is no performance loss due to the presence of unreliable energy sources. As a part of our analysis, we model the temporal dynamics of the energy level at each BS as a birth-death process, derive the energy utilization rate, and use hitting/stopping time analysis to prove that there exists a fundamental limit on \rho_k that cannot be surpassed by any uncoordinated strategy.Comment: submitted to IEEE Transactions on Wireless Communications, July 201
    corecore