11,533 research outputs found
Self-consistent Improvement of the Finite Temperature Effective Potential
We present a self-consistent calculation of the finite temperature effective
potential for theory, using the composite operator effective
potential in which an infinite series of the leading diagrams is summed up. Our
calculation establishes the proper form of the leading correction to the
perturbative one-loop effective potential.Comment: 19 pages, Plain Tex, (References completely reorganized and
corresponding changes in the text. Also minor typo corrections. 4 figures
still not included.
About the oscillatory possibilities of the dynamical systems
This paper attempts to make feasible the evolutionary emergence of novelty in
a supposedly deterministic world which behavior is associated with those of the
mathematical dynamical systems. The work was motivated by the observation of
complex oscillatory behaviors in a family of physical devices, for which there
is no known explanation in the mainstream of nonlinear dynamics. The paper
begins by describing a nonlinear mechanism of oscillatory mode mixing
explaining such behaviors and establishes a generic dynamical scenario with
extraordinary oscillatory possibilities, including expansive growing
scalability. The relation of the scenario to the oscillatory behaviors of
turbulent fluids and living brains is discussed. Finally, by considering the
scenario as a dynamic substrate underlying generic aspects of both the
functioning and the genesis of complexity in a supposedly deterministic world,
a theoretical framework covering the evolutionary development of structural
transformations in the time evolution of that world is built up.Comment: 40 pages, 12 figures, to appear in Physica
Optical response of two-dimensional few-electron concentric double quantum rings: A local-spin-density-functional theory study
We have investigated the dipole charge- and spin-density response of
few-electron two-dimensional concentric nanorings as a function of the
intensity of a perpendicularly applied magnetic field. We show that the dipole
response displays signatures associated with the localization of electron
states in the inner and outer ring favored by the perpendicularly applied
magnetic field. Electron localization produces a more fragmented spectrum due
to the appearance of additional edge excitations in the inner and outer ring.Comment: To be published in Physical Review
Electronic structure of few-electron concentric double quantum rings
The ground state structure of few-electron concentric double quantum rings is
investigated within the local spin density approximation. Signatures of
inter-ring coupling in the addition energy spectrum are identified and
discussed. We show that the electronic configurations in these structures can
be greatly modulated by the inter-ring distance: At short and long distances
the low-lying electron states localize in the inner and outer rings,
respectively, and the energy structure is essentially that of an isolated
single quantum ring. However, at intermediate distances the electron states
localized in the inner and the outer ring become quasi-degenerate and a rather
entangled, strongly-correlated system is formed.Comment: 16 pages (preprint format), 6 figure
Novel software techniques for automatic microwave measurements
Although many microwave measurement techniques are heavily based on special purpose software, the application of modern software techniques like object oriented programming and new programming language like C++ is seldom used. The impact of such new software solutions can drastically improve the overall design of a microwave test set. The paper presents the design and implementation of a new multiport network analyzer with particular attention to the control program architecture. The use of Object Oriented Programming techniques results in a clear and easy to maintain solution which boosts both the user interface and the overall test set organizatio
Mean field and pairing properties in the crust of neutron stars
Properties of the matter in the inner crust of a neutron star are
investigated in a Hartree-Fock plus BCS approximation employing schematic
effective forces of the type of the Skyrme forces. Special attention is paid to
differences between a homogenous and inhomogeneous description of the matter
distribution. For that purpose self-consistent Hartree Fock calculations are
performed in a spherical Wigner-Seitz cell. The results are compared to
predictions of corresponding Thomas Fermi calculations. The influence of the
shell structure on the formation of pairing correlations in inhomogeneous
matter are discussed.Comment: 11 pages, 9 figure
Fundamentals of Heterogeneous Cellular Networks with Energy Harvesting
We develop a new tractable model for K-tier heterogeneous cellular networks
(HetNets), where each base station (BS) is powered solely by a self-contained
energy harvesting module. The BSs across tiers differ in terms of the energy
harvesting rate, energy storage capacity, transmit power and deployment
density. Since a BS may not always have enough energy, it may need to be kept
OFF and allowed to recharge while nearby users are served by neighboring BSs
that are ON. We show that the fraction of time a k^{th} tier BS can be kept ON,
termed availability \rho_k, is a fundamental metric of interest. Using tools
from random walk theory, fixed point analysis and stochastic geometry, we
characterize the set of K-tuples (\rho_1, \rho_2, ... \rho_K), termed the
availability region, that is achievable by general uncoordinated operational
strategies, where the decision to toggle the current ON/OFF state of a BS is
taken independently of the other BSs. If the availability vector corresponding
to the optimal system performance, e.g., in terms of rate, lies in this
availability region, there is no performance loss due to the presence of
unreliable energy sources. As a part of our analysis, we model the temporal
dynamics of the energy level at each BS as a birth-death process, derive the
energy utilization rate, and use hitting/stopping time analysis to prove that
there exists a fundamental limit on \rho_k that cannot be surpassed by any
uncoordinated strategy.Comment: submitted to IEEE Transactions on Wireless Communications, July 201
- …
