1,080 research outputs found

    Entropy based fingerprint for local crystalline order

    Full text link
    We introduce a new fingerprint that allows distinguishing between liquid-like and solid-like atomic environments. This fingerprint is based on an approximate expression for the entropy projected on individual atoms. When combined with a local enthalpy, this fingerprint acquires an even finer resolution and it is capable of discriminating between different crystal structures.Comment: 6 pages, 4 figure

    Phase equilibrium of liquid water and hexagonal ice from enhanced sampling molecular dynamics simulations

    Full text link
    We study the phase equilibrium between liquid water and ice Ih modeled by the TIP4P/Ice interatomic potential using enhanced sampling molecular dynamics simulations. Our approach is based on the calculation of ice Ih-liquid free energy differences from simulations that visit reversibly both phases. The reversible interconversion is achieved by introducing a static bias potential as a function of an order parameter. The order parameter was tailored to crystallize the hexagonal diamond structure of oxygen in ice Ih. We analyze the effect of the system size on the ice Ih-liquid free energy differences and we obtain a melting temperature of 270 K in the thermodynamic limit. This result is in agreement with estimates from thermodynamic integration (272 K) and coexistence simulations (270 K). Since the order parameter does not include information about the coordinates of the protons, the spontaneously formed solid configurations contain proton disorder as expected for ice Ih.Comment: 9 pages, 6 figure

    Rilevamento geologico ed analisi strutturale delle unità continentali a Nord di Corte (Corsica).

    Get PDF
    Questo lavoro di tesi studia la tettonica e il metamorfismo nella zona a Nord di Corte, analizzando dati di campagna, dati strutturali e microstrutturali e analisi alla microsonda elettronica. Da tali analisi si sono potute determinare le condizioni di pressione e temperatura delle unità studiate e chiarificare così il loro coinvolgimento nell'orogenesi Alpina

    Atomistic Mechanism of the Nucleation of Methylammonium Lead Iodide Perovskite from Solution

    Full text link
    In the ongoing intense quest to increase the photoconversion efficiencies of lead halide perovskites, it has become evident that optimizing the morphology of the material is essential to achieve high peformance. Despite the fact that nucleation plays a key role in controlling the crystal morphology, very little is known about the nucleation and crystal growth processes. Here, we perform metadynamics simulations of nucleation of methylammonium lead triiodide (MAPI) in order to unravel the atomistic details of perovskite crystallization from a γ\gamma-butyrolactone solution. The metadynamics trajectories show that the nucleation process takes place in several stages. Initially, dense amorphous clusters mainly consisting of lead and iodide appear from the homogeneous solution. These clusters evolve into lead iodide (PbI2_{2}) like structures. Subsequently, methylammonium (MA+^{+}) ions diffuse into this PbI2_{2}-like aggregates triggering the transformation into a perovskite crystal through a solid-solid transformation. Demonstrating the crucial role of the monovalent cations in crystallization, our simulations provide key insights into the evolution of the perovskite microstructure which is essential to make high-quality perovskite based solar cells and optoelectronics

    Enhancing entropy and enthalpy fluctuations to drive crystallization in atomistic simulations

    Full text link
    Crystallization is a process of great practical relevance in which rare but crucial fluctuations lead to the formation of a solid phase starting from the liquid. Like in all first order first transitions there is an interplay between enthalpy and entropy. Based on this idea, to drive crystallization in molecular simulations, we introduce two collective variables, one enthalpic and the other entropic. Defined in this way, these collective variables do not prejudge the structure the system is going to crystallize into. We show the usefulness of this approach by studying the case of sodium and aluminum that crystallize in the bcc and fcc crystalline structure, respectively. Using these two generic collective variables, we perform variationally enhanced sampling and well tempered metadynamics simulations, and find that the systems transform spontaneously and reversibly between the liquid and the solid phases.Comment: 4 pages, 2 figure

    Naphthalene crystal shape prediction from molecular dynamics simulations

    Full text link
    We used molecular dynamics simulations to predict the steady state crystal shape of naphthalene grown from ethanol solution. The simulations were performed at constant supersaturation by utilizing a recently proposed algorithm [Perego et al., J. Chem. Phys., 142, 2015, 144113]. To bring the crystal growth within the timescale of a molecular dynamics simulation we applied Well-Tempered Metadynamics with a spatially constrained collective variable, which focuses the sampling on the growing layer. We estimated that the resulting steady state crystal shape corresponds to a rhombic prism, which is in line with experiments. Further, we observed that at the investigated supersaturations, the {001ˉ}\{00\bar{1}\} face grows in a two step two dimensional nucleation mechanism while the considerably faster growing faces {11ˉ0}\{1\bar{1}0\} and {201ˉ}\{20\bar{1}\} grow new layers with a one step two dimensional nucleation mechanism

    Relaxation processes in thiophene-based random copolymers

    Get PDF
    The relaxation dynamics of soluble polyalkylthiophenes obtained by the random copolymerisation of 3,4-dibutylthiophene and 3-butylthiophene monomers is investigated. In these systems, the effective conjugation length, the optical gap and the non-radiative decay rate are controlled by varying the content of disubstituted monomers, the steric hindrance of which induces a twisting angle between thiophene rings. Several indications are reported in favour of spectral diffusion of the photoexcitations. Migration processes mainly occur within a few tens of picoseconds
    corecore