8,721 research outputs found

    Aging dynamics in quenched noisy long-range quantum Ising models

    Get PDF
    We consider the dd-dimensional transverse-field Ising model with power-law interactions J/rd+σJ/r^{d+\sigma} in the presence of a noisy longitudinal field with zero average. We study the longitudinal-magnetization dynamics of an initial paramagnetic state after a sudden switch-on of both the interactions and the noisy field. While the system eventually relaxes to an infinite-temperature state with vanishing magnetization correlations, we find that two-time correlation functions show aging at intermediate times. Moreover, for times shorter than the inverse noise strength κ\kappa and distances longer than a(J/κ)2/σa(J/\kappa)^{2/\sigma} with aa being the lattice spacing, we find a critical scaling regime of correlation and response functions consistent with the model A dynamical universality class with an initial-slip exponent θ=1\theta=1 and dynamical critical exponent z=σ/2z=\sigma/2. We obtain our results analytically by deriving an effective action for the magnetization field including the noise in a non-perturbative way. The above scaling regime is governed by a non-equilibrium fixed point dominated by the noise fluctuations.Comment: Accepted version, 11 pages, 5 figure

    Scalar-tensor theories, trace anomalies and the QCD-frame

    Full text link
    We consider the quantum effects of matter fields in scalar-tensor theories and clarify the role of trace anomaly when switching between conformally related `frames'. We exploit the property that the couplings between the scalar and the gauge fields are not frame-invariant in order to define a `QCD-frame', where the scalar is not coupled to the gluons. We show that this frame is a natural generalization of the `Jordan frame' in the case of non-metric theories and that it is particularly convenient for gravitational phenomenology: test bodies have trajectories that are as close as possible to geodesics with respect to such a metric and equivalence principle violations are directly proportional to the scalar coupling parameters written in this frame. We show how RG flow and decoupling work in metric and non-metric theories. RG-running commutes with the operation of switching between frames at different scales. When only matter loops are considered, our analysis confirms that metricity is stable under radiative corrections and shows that approximate metricity is natural in a technical sense.Comment: 10 pages. Minor changes to the main text, appendix added. To appear on PR

    Improved local-constant-field approximation for strong-field QED codes

    Get PDF
    The local-constant-field approximation (LCFA) is an essential theoretical tool for investigating strong-field QED phenomena in background electromagnetic fields with complex spacetime structure. In our previous work [Phys.~Rev.~A~\textbf{98}, 012134 (2018)] we have analyzed the shortcomings of the LCFA in nonlinear Compton scattering at low emitted photon energies for the case of a background plane-wave field. Here, we generalize that analysis to background fields, which can feature a virtually arbitrary spacetime structure. In addition, we provide an explicit and simple implementation of an improved expression of the nonlinear Compton scattering differential probability that solves the main shortcomings of the standard LCFA in the infrared region, and is suitable for background electromagnetic fields with arbitrary spacetime structure such as those occurring in particle-in-cell simulations. Finally, we carry out a systematic procedure to calculate the probability of nonlinear Compton scattering per unit of emitted photon light-cone energy and of nonlinear Breit-Wheeler pair production per unit of produced positron light-cone energy beyond the LCFA in a plane-wave background field, which allows us to identify the limits of validity of this approximation quantitatively.Comment: 15 pages, 3 figure

    Effect of a strong laser field on e+ee^+ e^- photoproduction by relativistic nuclei

    Full text link
    We study the influence of a strong laser field on the Bethe-Heitler photoproduction process by a relativistic nucleus. The laser field propagates in the same direction as the incoming high-energy photon and it is taken into account exactly in the calculations. Two cases are considered in detail. In the first case, the energy of the incoming photon in the nucleus rest frame is much larger than the electron's rest energy. The presence of the laser field may significantly suppress the photoproduction rate at soon available values of laser parameters. In the second case, the energy of the incoming photon in the rest frame of the nucleus is less than and close to the electron-positron pair production threshold. The presence of the laser field allows for the pair production process and the obtained electron-positron rate is much larger than in the presence of only the laser and the nuclear field. In both cases we have observed a strong dependence of the rate on the mutual polarization of the laser field and of the high-energy photon and the most favorable configuration is with laser field and high-energy photon linearly polarized in the same direction. The effects discussed are in principle measurable with presently available proton accelerators and laser systems.Comment: 21 pages, 4 figure

    Determining the carrier-envelope phase of intense few-cycle laser pulses

    Full text link
    The electromagnetic radiation emitted by an ultra-relativistic accelerated electron is extremely sensitive to the precise shape of the field driving the electron. We show that the angular distribution of the photons emitted by an electron via multiphoton Compton scattering off an intense (I>10^{20}\;\text{W/cm^2}), few-cycle laser pulse provides a direct way of determining the carrier-envelope phase of the driving laser field. Our calculations take into account exactly the laser field, include relativistic and quantum effects and are in principle applicable to presently available and future foreseen ultra-strong laser facilities.Comment: 4 pages, 2 figure

    A Multi Megawatt Cyclotron Complex to Search for CP Violation in the Neutrino Sector

    Full text link
    A Multi Megawatt Cyclotron complex able to accelerate H2+ to 800 MeV/amu is under study. It consists of an injector cyclotron able to accelerate the injected beam up to 50 MeV/n and of a booster ring made of 8 magnetic sectors and 8 RF cavities. The magnetic field and the forces on the superconducting coils are evaluated using the 3-D code OPERA. The injection and extraction trajectories are evaluated using the well tested codes developed by the MSU group in the '80s. The advantages to accelerate H2+ are described and preliminary evaluations on the feasibility and expected problems to build the injector cyclotron and the ring booster are here presented.Comment: Presentation at Cyclotron'10 conference, Lanzhou, China, Sept 7, 201

    Phase Estimation With Interfering Bose-Condensed Atomic Clouds

    Full text link
    We investigate how to estimate from atom-position measurements the relative phase of two Bose-Einstein condensates released from a double-well potential. We demonstrate that the phase estimation sensitivity via the fit of the average density to the interference pattern is fundamentally bounded by shot noise. This bound can be overcome by estimating the phase from the measurement of N\sqrt N (or higher) correlation function. The optimal estimation strategy requires the measurement of the NN-th order correlation function. We also demonstrate that a second estimation method -- based on the detection of the center of mass of the interference pattern -- provides sub shot-noise sensitivity. Yet, the implementation of both protocols might be experimentally challenging.Comment: 4 pages, 2 figure
    corecore