1,800 research outputs found
The Intentions Behind the Creation of Barbie
Many researchers of Barbie are either entirely positive or negative in their outlook on the purpose of the doll. Some claim that Barbie was created for girls to have an imaginative outlet, but others say that Barbie was meant to confine and restrict women within a certain role. Many agree with the creator, Ruth Handler, that Barbie was a symbol of the independent woman; however, others believe she was limited to a traditional woman’s place in the 1950s and 1960s. Using Barbie novels published in the early 1960s, which have been analyzed by only few authors, and other primary and secondary sources, I will attempt to write a balanced history of the intentions behind the creation of Barbie while discussing the difficulty of determining the truth behind her creation
Taxation—Section 223 of the 1964 Revenue Act—Remittance in Response to Asserted Liability—Interest Deductibility in Year of Transfer.—Charles Leich and Co. v. United States
The Erosion of Rights: Declining Civil Rights Enforcement Under the Bush Administration
The erosion of civil rights across our nation over the past six years is the result of willful neglect and calculated design. The Bush administration continues to use the courts and the judicial appointment process to narrow civil rights protections and repeal remedies for legal redress while allowing the traditional tools of the executive branch for civil rights enforcement to wither and die. The resulting inequality of opportunity, deteriorating civil liberties, and rising religious and racial discrimination are sad commentaries on the priorities of the current administration
An Introduction to Twisted Particle Filters and Parameter Estimation in Non-linear State-space Models
Twisted particle filters are a class of sequential Monte Carlo methods
recently introduced by Whiteley and Lee to improve the efficiency of marginal
likelihood estimation in state-space models. The purpose of this article is to
extend the twisted particle filtering methodology, establish accessible
theoretical results which convey its rationale, and provide a demonstration of
its practical performance within particle Markov chain Monte Carlo for
estimating static model parameters. We derive twisted particle filters that
incorporate systematic or multinomial resampling and information from
historical particle states, and a transparent proof which identifies the
optimal algorithm for marginal likelihood estimation. We demonstrate how to
approximate the optimal algorithm for nonlinear state-space models with
Gaussian noise and we apply such approximations to two examples: a range and
bearing tracking problem and an indoor positioning problem with Bluetooth
signal strength measurements. We demonstrate improvements over standard
algorithms in terms of variance of marginal likelihood estimates and Markov
chain autocorrelation for given CPU time, and improved tracking performance
using estimated parameters.Comment: This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may no
longer be accessibl
Mitigating radiation damage of single photon detectors for space applications
Single-photon detectors in space must retain useful performance
characteristics despite being bombarded with sub-atomic particles. Mitigating
the effects of this space radiation is vital to enabling new space applications
which require high-fidelity single-photon detection. To this end, we conducted
proton radiation tests of various models of avalanche photodiodes (APDs) and
one model of photomultiplier tube potentially suitable for satellite-based
quantum communications. The samples were irradiated with 106 MeV protons at
doses approximately equivalent to lifetimes of 0.6 , 6, 12 and 24 months in a
low-Earth polar orbit. Although most detection properties were preserved,
including efficiency, timing jitter and afterpulsing probability, all APD
samples demonstrated significant increases in dark count rate (DCR) due to
radiation-induced damage, many orders of magnitude higher than the 200 counts
per second (cps) required for ground-to-satellite quantum communications. We
then successfully demonstrated the mitigation of this DCR degradation through
the use of deep cooling, to as low as -86 degrees C. This achieved DCR below
the required 200 cps over the 24 months orbit duration. DCR was further reduced
by thermal annealing at temperatures of +50 to +100 degrees C.Comment: The license has been corrected. Note that the license of v2 was
incorrect and not valid. No other changes since v
Star Formation in the Northern Cloud Complex of NGC 2264
We have made continuum and spectral line observations of several outflow
sources in the Mon OB1 dark cloud (NGC 2264) using the Heinrich Hertz Telescope
(HHT) and ARO 12m millimeter-wave telescope. This study explores the kinematics
and outflow energetics of the young stellar systems observed and assesses the
impact star formation is having on the surrounding cloud environment. Our data
set incorporates 12CO(3-2), 13CO(3-2), and 12CO(1-0) observations of outflows
associated with the sources IRAS 06382+1017 and IRAS 06381+1039, known as IRAS
25 and 27, respectively, in the northern cloud complex. Complementary 870
micron continuum maps were made with the HHT 19 channel bolometer array. Our
results indicate that there is a weak (approximately less than 0.5%) coupling
between outflow kinetic energy and turbulent energy of the cloud. An analysis
of the energy balance in the IRAS 25 and 27 cores suggests they are maintaining
their dynamical integrity except where outflowing material directly interacts
with the core, such as along the outflow axes.Comment: 28 pages including 6 figures, to be published in ApJ 01 July 2006,
v645, 1 issu
- …
