138 research outputs found

    Phenomenological consequences of Higgs inflation in the NMSSM at the electroweak scale

    Full text link
    The Next-to-Minimal Supersymmetric Standard Model (NMSSM) can incorporate inflation, where a combination of the Higgs-doublet fields plays the role of the inflaton. At the high scale, the Higgs doublets are non-minimally coupled to supergravity; this coupling appears as an additional contribution to the μ\mu term in the low-energy effective superpotential and potentially changes physics at the electroweak scale. In a recent publication, we investigate the extended parameter space of this model with respect to collider phenomenology at the electroweak scale, and discuss scenarios which are potentially different from the pure NMSSM. We analyse the stability of the electroweak vacuum, the masses of neutralinos/charginos and Higgs bosons as well as the mixing and decays of Higgs bosons. Some important aspects of this study are described in the following.Comment: 4 pages, 2 figure

    Phenomenology of the inflation-inspired NMSSM at the electroweak scale

    Get PDF
    The concept of Higgs inflation can be elegantly incorporated in the Next-to-Minimal Supersymmetric Standard Model (NMSSM). A linear combination of the two Higgs-doublet fields plays the role of the inflaton which is non-minimally coupled to gravity. This non-minimal coupling appears in the low-energy effective superpotential and changes the phenomenology at the electroweak scale. While the field content of the inflation-inspired model is the same as in the NMSSM, there is another contribution to the μ term in addition to the vacuum expectation value of the singlet. We explore this extended parameter space and point out scenarios with phenomenological differences compared to the pure NMSSM. A special focus is set on the electroweak vacuum stability and the parameter dependence of the Higgs and neutralino sectors. We highlight regions which yield a SM-like 125GeV Higgs boson compatible with the experimental observations and are in accordance with the limits from searches for additional Higgs bosons. Finally, we study the impact of the non-minimal coupling to gravity on the Higgs mixing and in turn on the decays of the Higgs bosons in this model

    Mass Bounds on a Very Light Neutralino

    Get PDF
    Within the Minimal Supersymmetric Standard Model (MSSM) we systematically investigate the bounds on the mass of the lightest neutralino. We allow for non-universal gaugino masses and thus even consider massless neutralinos, while assuming in general that R-parity is conserved. Our main focus are laboratory constraints. We consider collider data, precision observables, and also rare meson decays to very light neutralinos. We then discuss the astrophysical and cosmological implications. We find that a massless neutralino is allowed by all existing experimental data and astrophysical and cosmological observations.Comment: 36 pages, 13 figures, minor modification in astro-physical bounds. EPJC versio

    25 years of experience with transjugular intrahepatic portosystemic shunt (TIPS): changes in patient selection and procedural aspects

    Get PDF
    Background: TIPS is an established treatment for portal hypertension. The aim was to analyze how patient selection for TIPS implantation and procedural aspects have changed over 25 years. Routinely collected demographic, clinical, laboratory, and procedural data of 835 patients treated with TIPS in a single center were used. Time trends over the observational period from 1993 to 2018 were retrospectively analyzed. Descriptive statistical analysis was performed. Results: The most common indication for TIPS implantation has changed significantly from secondary prevention of variceal hemorrhage in the early years to treatment of recurrent ascites. During the observation period, increasingly more severely ill patients became TIPS candidates. There was little change in MELD scores over this period (in total median 13.00; IQR 10.00-18.00). The proportion of patients with Child-Pugh C cirrhosis increased. The most frequent underlying diseases in total were alcohol-related liver disease (66.5%) and viral hepatitis (11.9%). However, shares of cryptogenic liver cirrhosis, autoimmune hepatitis, and NASH increased over time. The proportion of patients post liver transplant also increased. While bare metal stents were standard in the past, use of covered stents increased. The success rate of TIPS (defined by successful implantation and a decrease in the portosystemic pressure gradient <= 12 mmHg) increased significantly over time. The total success rate according to this definition was 84.9%. Conclusion: The results of our analysis reflect technical developments in TIPS, especially in terms of stent material and gains in clinical experience, particularly regarding indications and patient selection for TIPS implantation

    Physics case for an e+e− collider at 500 GeV and above

    Get PDF
    Some highlights of the physics case for running an e+e− collider at 500 GeV and above are discussed with a particular emphasis on the experimental access to the Higgs potential via di-Higgs and (at sufficiently high energy) triple Higgs production. The information obtainable from Higgs pair production at about 500 GeV is compared with the prospects for the HL-LHC and with the indirect information that can be obtained from a Higgs factory running at lower energies

    The promise of community-drivenpreprints in ecology and evolution

    Get PDF
    Publishing preprints is quickly becoming commonplace in ecology and evolutionary biology. Preprints can facilitate the rapid sharing of scientific knowledge establishing precedence and enabling feedback from the research community before peer review. Yet, significant barriers to preprint use exist, including language barriers, a lack of understanding about the benefits of preprints and a lack of diversity in the types of research outputs accepted (e.g. reports). Community-driven preprint initiatives can allow a research community to come together to break down these barriers to improve equity and coverage of global knowledge. Here, we explore the first preprints uploaded to EcoEvoRxiv (n = 1216), a community-driven preprint server for ecologists and evolutionary biologists, to characterize preprint use in ecology, evolution and conservation. Our perspective piece highlights some of the unique initiatives that EcoEvoRxiv has taken to break down barriers to scientific publishing by exploring the composition of articles, how gender and career stage influence preprint use, whether preprints are associated with greater open science practices (e.g. code and data sharing) and tracking preprint publication outcomes. Our analysis identifies areas that we still need to improve upon but highlights how community-driven initiatives, such as EcoEvoRxiv, can play a crucial role in shaping publishing practices in biology

    The International Linear Collider:Report to Snowmass 2021

    Get PDF
    The International Linear Collider (ILC) is on the table now as a new global energy-frontier accelerator laboratory taking data in the 2030s. The ILC addresses key questions for our current understanding of particle physics. It is based on a proven accelerator technology. Its experiments will challenge the Standard Model of particle physics and will provide a new window to look beyond it. This document brings the story of the ILC up to date, emphasizing its strong physics motivation, its readiness for construction, and the opportunity it presents to the US and the global particle physics community

    Das Kabelpfandrecht.

    Full text link

    Das Inventarpfandrecht.

    Full text link
    corecore