156 research outputs found

    Electrocardiographic indicators of acute coronary syndrome are more common in patients with ambulance transport compared to those who self-transport to the emergency department journal of electrocardiology

    Get PDF
    The American Heart Association recommends individuals with symptoms suggestive of acute coronary syndrome (ACS) activate the Emergency Medical Services’ (EMS) 911 system for ambulance transport to the emergency department (ED), which enables treatment to begin prior to hospital arrival. Despite this recommendation, the majority of patients with symptoms suspicious of ACS continue to self-transport to the ED. The IMMEDIATE AIM study was a prospective study that enrolled individuals who presented to the ED with ischemic symptoms

    International criteria for electrocardiographic interpretation in athletes: Consensus statement.

    Get PDF
    Sudden cardiac death (SCD) is the leading cause of mortality in athletes during sport. A variety of mostly hereditary, structural or electrical cardiac disorders are associated with SCD in young athletes, the majority of which can be identified or suggested by abnormalities on a resting 12-lead electrocardiogram (ECG). Whether used for diagnostic or screening purposes, physicians responsible for the cardiovascular care of athletes should be knowledgeable and competent in ECG interpretation in athletes. However, in most countries a shortage of physician expertise limits wider application of the ECG in the care of the athlete. A critical need exists for physician education in modern ECG interpretation that distinguishes normal physiological adaptations in athletes from distinctly abnormal findings suggestive of underlying pathology. Since the original 2010 European Society of Cardiology recommendations for ECG interpretation in athletes, ECG standards have evolved quickly, advanced by a growing body of scientific data and investigations that both examine proposed criteria sets and establish new evidence to guide refinements. On 26-27 February 2015, an international group of experts in sports cardiology, inherited cardiac disease, and sports medicine convened in Seattle, Washington (USA), to update contemporary standards for ECG interpretation in athletes. The objective of the meeting was to define and revise ECG interpretation standards based on new and emerging research and to develop a clear guide to the proper evaluation of ECG abnormalities in athletes. This statement represents an international consensus for ECG interpretation in athletes and provides expert opinion-based recommendations linking specific ECG abnormalities and the secondary evaluation for conditions associated with SCD

    Feasibility and Compliance with Daily Home ECG Monitoring of the QT Interval in Heart Transplant Recipients

    Get PDF
    Background: Recent evidence suggests that acute allograft rejection after heart transplantation causes an increased QT interval on electrocardiogram (ECG). The aims of this pilot study were to (1) determine whether heart transplant recipients could achieve compliance in transmitting a 30-second ECG every day for 1 month using a simple ECG device and their home telephone, (2) evaluate the ease of device use and acceptability by transplant recipients, and (3) evaluate the quality of transmitted ECG tracings for QT-interval measurement. Methods: A convenience sample of adult heart transplant recipients were recruited and trained to use the device (HeartOne, Aerotel Medical Systems, Holon, Israel). Lead II was used with electrodes that were easy to slip on and off (expandable metal wrist watch-type electrode for right wrist and C-shaped band electrode for left ankle). Patients used a toll-free number with automated voice prompts to guide their ECG transmission to the core laboratory for analysis. Results: Thirty-one subjects (72% were male; mean age of 52 ± 17 years; 37% were nonwhite) achieved an ECG transmission compliance of 73.4% (daily) and 100% (weekly). When asked, how difficult do you think it was to record and transmit your ECG by phone, 90% of subjects replied “somewhat easy” or “extremely easy.” Of the total 644 ECGs that were transmitted by subjects, 569 (89%) were acceptable quality for QT-interval measurement. The mean QTc was 448 ± 44 ms (440 ± 41 ms for male subjects and 471 ± 45 ms for female subjects). Eleven subjects (35%) had an extremity tremor, and 19 subjects (55%) had ≥ 1+ left leg edema. Neither of these conditions interfered with ECG measurements. Conclusion: Transplant recipients are compliant with recording and transmitting daily and weekly ECGs

    Remote noninvasive allograft rejection monitoring for heart transplant recipients: study protocol for the novel evaluation with home electrocardiogram and remote transmission (NEW HEART) study

    Get PDF
    Background: Acute allograft rejection is a major cause of early mortality in the first year after heart transplantation in adults. Although endomyocardial biopsy (EMB) is not a perfect "gold standard" for a correct diagnosis of acute allograft rejection, it is considered the best available test and thus, is the current standard practice. Unfortunately, EMB is an invasive and costly procedure that is not without risk. Recent evidence suggests that acute allograft rejection causes delays in ventricular repolarization and thereby increases the cellular action potential duration resulting in a longer QT interval on the electrocardiogram (ECG). No prospective study to date has investigated whether such increases in the QT interval could provide early detection of acute allograft rejection. Therefore, in the Novel Evaluation With Home Electrocardiogram And Remote Transmission (NEW HEART) study, we plan to investigate the potential benefit of daily home QT interval monitoring to predict acute allograft rejection. Methods/design: The NEW HEART study is a prospective, double-blind, multi-center descriptive research study. A sample of 325 adult heart transplant recipients will be recruited within six weeks of transplant from three sites in the United States. Subjects will receive the HeartView™ ECG recorder and its companion Internet Transmitter, which will transmit the subject's ECG to a Core Laboratory. Subjects will be instructed to record and transmit an ECG recording daily for 6 months. An increase in the QTC interval from the previous day of at least 25 ms that persists for 3 consecutive days will be considered abnormal. The number and grade of acute allograft rejection episodes, as well as all-cause mortality, will be collected for one year following transplant surgery. Discussion: This study will provide "real world" prospective data to determine the sensitivity and specificity of QTC as an early non invasive marker of cellular rejection in transplant recipients during the first post-transplant year. A non-invasive indicator of early allograft rejection in heart transplant recipients has the potential to limit the number and severity of rejection episodes by reducing the time and cost of rejection surveillance and by shortening the time to recognition of rejection. Trial Registration: ClinicalTrials.gov: NCT0136580

    Repositioning for pressure injury prevention in adults

    Get PDF
    BACKGROUND: A pressure injury (PI), also referred to as a 'pressure ulcer', or 'bedsore', is an area of localised tissue damage caused by unrelieved pressure, friction, or shearing on any part of the body. Immobility is a major risk factor and manual repositioning a common prevention strategy. This is an update of a review first published in 2014. OBJECTIVES: To assess the clinical and cost effectiveness of repositioning regimens(i.e. repositioning schedules and patient positions) on the prevention of PI in adults regardless of risk in any setting. SEARCH METHODS: We searched the Cochrane Wounds Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), Ovid MEDLINE, Ovid Embase, and EBSCO CINAHL Plus on 12 February 2019. We also searched clinical trials registries for ongoing and unpublished studies, and scanned the reference lists of included studies as well as reviews, meta-analyses, and health technology reports to identify additional studies. There were no restrictions with respect to language, date of publication, or study setting. SELECTION CRITERIA: Randomised controlled trials (RCTs), including cluster-randomised trials (c-RCTs), published or unpublished, that assessed the effects of any repositioning schedule or different patient positions and measured PI incidence in adults in any setting. DATA COLLECTION AND ANALYSIS: Three review authors independently performed study selection, 'Risk of bias' assessment, and data extraction. We assessed the certainty of the evidence using GRADE. MAIN RESULTS: We identified five additional trials and one economic substudy in this update, resulting in the inclusion of a total of eight trials involving 3941 participants from acute and long-term care settings and two economic substudies in the review. Six studies reported the proportion of participants developing PI of any stage. Two of the eight trials reported within-trial cost evaluations. Follow-up periods were short (24 hours to 21 days). All studies were at high risk of bias. Funding sources were reported in five trials. Primary outcomes: proportion of new PI of any stage Repositioning frequencies: three trials compared different repositioning frequencies We pooled data from three trials (1074 participants) comparing 2-hourly with 4-hourly repositioning frequencies (fixed-effect; I² = 45%; pooled risk ratio (RR) 1.06, 95% confidence interval (CI) 0.80 to 1.41). It is uncertain whether 2-hourly repositioning compared with 4-hourly repositioning used in conjunction with any support surface increases or decreases the incidence of PI. The certainty of the evidence is very low due to high risk of bias, downgraded twice for risk of bias, and once for imprecision. One of these trials had three arms (967 participants) comparing 2-hourly, 3-hourly, and 4-hourly repositioning regimens on high-density mattresses; data for one comparison was included in the pooled analysis. Another comparison was based on 2-hourly versus 3-hourly repositioning. The RR for PI incidence was 4.06 (95% CI 0.87 to 18.98). The third study comparison was based on 3-hourly versus 4-hourly repositioning (RR 0.20, 95% CI 0.04 to 0.92). The certainty of the evidence is low due to risk of bias and imprecision. In one c-RCT, 262 participants in 32 ward clusters were randomised between 2-hourly and 3-hourly repositioning on standard mattresses and 4-hourly and 6-hourly repositioning on viscoelastic mattresses. The RR for PI with 2-hourly repositioning compared with 3-hourly repositioning on standard mattress is imprecise (RR 0.90, 95% CI 0.69 to 1.16; very low-certainty evidence). The CI for PI include both a large reduction and no difference for the comparison of 4-hourly and 6-hourly repositioning on viscoelastic foam (RR 0.73, 95% CI 0.53 to 1.02). The certainty of the evidence is very low, downgraded twice due to high risk of bias, and once for imprecision. Positioning regimens: four trials compared different tilt positions We pooled data from two trials (252 participants) that compared a 30° tilt with a 90° tilt (random-effects; I² = 69%). There was no clear difference in the incidence of stage 1 or 2 PI. The effect of tilt is uncertain because the certainty of evidence is very low (pooled RR 0.62, 95% CI 0.10 to 3.97), downgraded due to serious design limitations and very serious imprecision. One trial involving 120 participants compared 30° tilt and 45° tilt with 'usual care' and reported no occurrence of PI events (low certainty evidence). Another trial involving 116 ICU patients compared prone with the usual supine positioning for PI. Reporting was incomplete and this is low certainty evidence. Secondary outcomes No studies reported health-related quality of life utility scores, procedural pain, or patient satisfaction. Cost analysis Two included trials also performed economic analyses. A cost-minimisation analysis compared the costs of 3-hourly and 4-hourly repositioning with 2-hourly repositioning schedule amongst nursing home residents. The cost of repositioning was estimated at CAD 11.05 and CAD 16.74 less per resident per day for the 3-hourly or 4-hourly regimen, respectively, compared with the 2-hourly regimen. The estimates of economic benefit were driven mostly by the value of freed nursing time. The analysis assumed that 2-, 3-, or 4-hourly repositioning is associated with a similar incidence of PI, as no difference in incidence was observed. A second study compared the nursing time cost of 3-hourly repositioning using a 30° tilt with standard care (6-hourly repositioning with a 90° lateral rotation) amongst nursing home residents. The intervention was reported to be cost-saving compared with standard care (nursing time cost per patient EUR 206.60 versus EUR 253.10, incremental difference EUR -46.50, 95% CI EUR -1.25 to EUR -74.60). AUTHORS' CONCLUSIONS: Despite the addition of five trials, the results of this update are consistent with our earlier review, with the evidence judged to be of low or very low certainty. There remains a lack of robust evaluations of repositioning frequency and positioning for PI prevention and uncertainty about their effectiveness. Since all comparisons were underpowered, there is a high level of uncertainty in the evidence base. Given the limited data from economic evaluations, it remains unclear whether repositioning every three hours using the 30° tilt versus "usual care" (90° tilt) or repositioning 3-to-4-hourly versus 2-hourly is less costly relative to nursing time

    Understanding and Documenting QT Intervals

    Full text link
    corecore