3,952 research outputs found
Dependence of two-nucleon momentum densities on total pair momentum
Two-nucleon momentum distributions are calculated for the ground states of
3He and 4He as a function of the nucleons' relative and total momenta. We use
variational Monte Carlo wave functions derived from a realistic Hamiltonian
with two- and three-nucleon potentials. The momentum distribution of pp pairs
is found to be much smaller than that of pn pairs for values of the relative
momentum in the range (300--500) MeV/c and vanishing total momentum. However,
as the total momentum increases to 400 MeV/c, the ratio of pp to pn pairs in
this relative momentum range grows and approaches the limit 1/2 for 3He and 1/4
for 4He, corresponding to the ratio of pp to pn pairs in these nuclei. This
behavior should be easily observable in two-nucleon knock-out processes, such
as A(e,e'pN).Comment: 3 pages, 3 figure
Quantum Monte Carlo Calculations of Light Nuclei
Accurate quantum Monte Carlo calculations of ground and low-lying excited
states of light p-shell nuclei are now possible for realistic nuclear
Hamiltonians that fit nucleon-nucleon scattering data. At present, results for
more than 30 different (J^pi;T) states, plus isobaric analogs, in A \leq 8
nuclei have been obtained with an excellent reproduction of the experimental
energy spectrum. These microscopic calculations show that nuclear structure,
including both single-particle and clustering aspects, can be explained
starting from elementary two- and three-nucleon interactions. Various density
and momentum distributions, electromagnetic form factors, and spectroscopic
factors have also been computed, as well as electroweak capture reactions of
astrophysical interest.Comment: 43 pages, including 12 embedded figures. Revised version corrects
postscript error on page 29 and small numberical errors in discussion of
table 3. With permission from the Annual Review of Nuclear and Particle
Science. Final version of this material is scheduled to appear in the Annual
Review of Nuclear and Particle Science Vol. 51, to be published in December
2001 by Annual Reviews, http://AnnualReviews.or
Phase Transitions in a Dusty Plasma with Two Distinct Particle Sizes
In semiconductor manufacturing, contamination due to particulates
significantly decreases the yield and quality of device fabrication, therefore
increasing the cost of production. Dust particle clouds can be found in almost
all plasma processing environments including both plasma etching devices and in
plasma deposition processes. Dust particles suspended within such plasmas will
acquire an electric charge from collisions with free electrons in the plasma.
If the ratio of inter-particle potential energy to the average kinetic energy
is sufficient, the particles will form either a liquid structure with short
range ordering or a crystalline structure with long range ordering. Otherwise,
the dust particle system will remain in a gaseous state. Many experiments have
been conducted over the past decade on such colloidal plasmas to discover the
character of the systems formed, but more work is needed to fully understand
these structures. The preponderance of previous experiments used monodisperse
spheres to form complex plasma systems
Tensor Forces and the Ground-State Structure of Nuclei
Two-nucleon momentum distributions are calculated for the ground states of
nuclei with mass number , using variational Monte Carlo wave functions
derived from a realistic Hamiltonian with two- and three-nucleon potentials.
The momentum distribution of pairs is found to be much larger than that of
pairs for values of the relative momentum in the range (300--600) MeV/c
and vanishing total momentum. This order of magnitude difference is seen in all
nuclei considered and has a universal character originating from the tensor
components present in any realistic nucleon-nucleon potential. The correlations
induced by the tensor force strongly influence the structure of pairs,
which are predominantly in deuteron-like states, while they are ineffective for
pairs, which are mostly in S states. These features should be
easily observable in two-nucleon knock-out processes, such as and .Comment: 4 pages including 3 figure
Quantum Monte Carlo calculations of excited states in A = 6--8 nuclei
A variational Monte Carlo method is used to generate sets of orthogonal trial
functions, Psi_T(J^pi,T), for given quantum numbers in various light p-shell
nuclei. These Psi_T are then used as input to Green's function Monte Carlo
calculations of first, second, and higher excited (J^pi,T) states. Realistic
two- and three-nucleon interactions are used. We find that if the physical
excited state is reasonably narrow, the GFMC energy converges to a stable
result. With the combined Argonne v_18 two-nucleon and Illinois-2 three-nucleon
interactions, the results for many second and higher states in A = 6--8 nuclei
are close to the experimental values.Comment: Revised version with minor changes as accepted by Phys. Rev. C. 11
page
- …
