65 research outputs found

    Деловое общение и манипуляция

    Get PDF
    Trois niveaux trophiques ont été expérimentalement étudiés chez le silure africain Heterobranchus longifilis. Au cours d'un 1er essai, des poissons d'un poids moyen initial de 60 g ont été rationnés (1 % du poids vif) pendant trois semaines puis alimentés pendant 3 semaines soit ad libitum soit à 3 % du poids vif. Leur croissance a été comparée à celle de poissons nourris en permanence soit en excès soit à raison de 3 % du poids vif. Si le poids vif final des lots ayant subi une restriction est inférieur à celui de leurs homologues alimentés à taux constant, les résultats indiquent que la restriction alimentaire induit ultérieurement une croissance spécifique significativement supérieure, et un indice de consommation meilleur. Cette croissance compensatrice est due à la fois à une hyperphagie et à une amélioration du métabolisme. Un effet positif de l'hyperphagie est encore noté pendant les deux semaines suivantes. Lors de la 2e expérience, des silures d'un poids moyen initial de 141 g ont été nourris pendant 10 semaines soit à un taux constant de 4 % du poids vif, soit alternativement à un taux de 2 % du poids vif pendant une semaine, puis alimentés pendant une semaine à raison de 4 ou 5 % du poids vif. Au terme de l'essai, les poids moyens ne sont pas significativement différents. Les indices de consommation les meilleurs (1,79) sont notés pour les poissons ayant subi l'alternance avec un niveau haut analogue au témoin (45 %). Lors d'une 3e expérience, des silures, d'un poids moyen initial de 340 g ont été nourris pendant 5 mois, soit au taux constant de 3 % du poids vif, soit de façon alternée à 2 et 4 % du poids vif sur la base d'un pas de 15 jours en tenant compte des phases lunaires. Au terme de l'expérience, les poids moyens finaux ont varié de 977 à 1 127 g, tandis que les indices de consommation variaient de 2,1 à 2,5. Les meilleures performances, pour l'ensemble des critères utilisés sont notées pour les lots nourris à 2 % du poids vif en lune descendante, puis à 4 % en lune montante. Chez les poissons nourris de façon restreinte, en période de lune montante, la croissance est minimale. Pour valoriser le phénomène de croissance compensatrice ainsi mis en évidence chez le silure on peut recommander une restriction alimentaire, durant des périodes de 1 semaine. En revanche, tirer bénéfice de l'hyperphagie ne semble pas profitable

    The effect of retinyl palmitate added to iron-fortified maize porridge on erythrocyte incorporation of iron in African children with vitamin A deficiency

    Get PDF
    Retinyl palmitate added to Fe-fortified maize bread has been reported to enhance Fe absorption in adult Venezuelan subjects but not in Western Europeans. It is not known to what extent these results were influenced by differences in vitamin A status of the study subjects. The objective of the present study was to evaluate the influence of retinyl palmitate added to Fe-fortified maize porridge on erythrocyte incorporation of Fe in children with vitamin A deficiency, before and after vitamin A supplementation. Erythrocyte incorporation of Fe-stable isotopes was measured 14 d after intake of maize porridge (2·0 mg Fe added as ferrous sulfate) with and without added retinyl palmitate (3·5 μmol; 3300 IU). The study was repeated 3 weeks after vitamin A supplementation (intake of a single dose of 210 μmol retinyl palmitate; ‘vitamin A capsule'). Vitamin A status was evaluated by the modified relative dose-response (MRDR) technique. Retinyl palmitate added to the test meal reduced the geometric mean erythrocyte incorporation of Fe at baseline from 4·0 to 2·6 % (P=0·008, n 13; paired t test). At 3 weeks after vitamin A supplementation, geometric mean erythrocyte incorporation was 1·9 and 2·3 % respectively from the test meal with and without added retinyl palmitate (P=0·283). Mean dehydroretinol:retinol molar ratios were 0·156 and 0·125 before and after intake of the single dose of 210 μmol retinyl palmitate; ‘vitamin A capsule' (P=0·15). In conclusion, retinyl palmitate added to the labelled test meals significantly decreased erythrocyte incorporation of Fe in children with vitamin A deficiency at baseline but had no statistically significant effect 3 weeks after vitamin A supplementation. The difference in response to retinyl palmitate added to Fe-fortified maize porridge on erythrocyte incorporation of Fe before and after intake of the vitamin A capsule indicates, indirectly, changes in vitamin A status not measurable by the MRDR technique. The lack of conclusive data on the effect of retinyl palmitate on Fe absorption indicates the complexity of the interactions between vitamin A status, dietary vitamin A and Fe metabolis

    Low dose oral iodized oil for control of iodine deficiency in children

    Get PDF
    In areas where iodized salt is not available, oral iodized oil is often used to correct I deficiency despite a lack of consensus on the optimal dose or duration of effect, particularly in children, a main target group. Annual doses ranging from 400 to 1000 mg have been advocated for school-age children. Because lower doses of iodized oil have been shown to be effective in treating I deficiency in adults, the aim of this study was to evaluate the efficacy and safety of a low dose of oral iodized oil in goitrous I-deficient children. Goitrous children (n 104, mean age 8·4 years, range 6-12 years, 47 % female) received 0·4 ml oral iodized poppyseed-oil containing 200 mg I. Baseline measurements included I in spot urines (UI), serum thyroxine (T4), whole blood thyroid-stimulating hormone (TSH), and thyroid-gland volume using ultrasound. At 1, 5, 10, 15, 30 and 50 weeks post-intervention, UI, TSH and T4 were measured. At 10, 15, 30 and 50 weeks, thyroid-gland volume was remeasured. At 30 and 50 weeks the mean percentage change in thyroid volume from baseline was -35 % and -41 % respectively. The goitre rate fell to 38 % at 30 weeks and 17 % at 50 weeks. No child showed signs of I-induced hypo- or hyperthyroidism. UI remained significantly increased above baseline for the entire year (P < 0·001); the median UI at 50 weeks was 97 μg/l, at the World Health Organization cut-off value (100 μg/l) for I-deficiency disorders risk. In this group of goitrous children, an oral dose of 200 mg I as Lipiodol (Guerbert, Roissy CdG Cedex, France) was safe and effective for treating goitre and maintaining normal I status for at least 1 yea

    Production of hybrid seeds by intraspecific crossing in yam Dioscorea alata L

    Get PDF
    Manual crosses were carried out over two successive years on Dioscorea alata for the production of hybrid seeds between five females and seven males' parents with contrasting characteristics. A total of 22951 flowers were manually pollinated in both years (14145 in 2016 and 8806 in 2017) in 33 parental combinations. The ploidy levels of the parents were determined by flow cytometry. The crossed parents were all diploids except the female OA49 which was triploid. In both years the fruiting and seed rates were comparable (25.06% and 22.82%; 30.05% and 30.18%). A significant variation in fruiting rates was observed between the different parental combinations. Analysis of variance have shown that there is both a male effect on the fruit setting. The lowest rates were observed in combinations involving male clones 23 and Ma01 (2.04% and 2.77%) and the highest rates involved males TDa00/00128 and TDa00/00095 (48.25% and 33.91%). The triploid female OA49 is sterile. Females TDa01/00003, TDa01/00018, TDa99/00240 and TDa01/00295 gave comparable fruiting rates which are respectively (37.87%, 29.38%, 24.70% and 20.92%). For seeds production, there is no male and female effect. The fruiting rate according to the time slot depends on each male variety involved. For some males, the fruiting rate is influenced by the time slot of pollination while for others, there is no time slot effect on the fruiting rate

    Les sciences du langage et la problématique de l’employabilité en Côte d’Ivoire : de la nécessité d’un passage de la linguistique appliquée aux services linguistiques

    Get PDF
    Résumé : La question de l’emploi se veut de plus en plus préoccupante dans les projets de société des gouvernants. Elle a donc amené plusieurs dirigeants à procéder à diverses mutations en tenant compte des réalités de l’écosystème de l’emploi et des besoins du marché. C’est ainsi que les universités publiques, principales pourvoyeuses de main d’œuvre sur le marché de l’emploi procèdent de façon périodique à de réformes afin de satisfaire ce besoin. En Côte d’Ivoire, la formation en sciences du langage semble avoir pris du retard sur cette problématique. Dans cette communication, il sera donc question de faire un état des lieux de cette question et surtout faire des propositions à partir des existants que sont la linguistique descriptive et la linguistique appliquée pour des services linguistiques adaptés aux réalités de l’employabilité en Côte d’Ivoire.   Mots-clés : sciences du langage, linguistique appliquée, services linguistiques, employabilit

    ALTERNANCE LINGUISTIQUE DANS LES INTÉRACTIONS VERBALES D’UNE FAMILLE IVOIRIENNE / CODE SWITCHING IN THE DAILY VERBAL INTERACTIONS OF AN IVORIAN FAMILY / SCHIMBAREA DE COD ÎN INTERACŢIUNILE VERBALE ZILNICE ALE UNEI FAMILII IVORIENE

    Get PDF
    De plus en plus en Côte d’Ivoire et certainement dans d’autres pays africains, le recours à l’alternance dans les pratiques langagières est chose fréquente. Ce phénomène linguistique est encore plus perceptible pendant les réunions de familles. L’alternance se fait la plupart du temps entre les langues locales et le français. Il semble quasi-impossible aujourd’hui de parler régulièrement une langue locale sans avoir recours au français, même pendant les rencontres sensées réunir essentiellement des personnes d’une même famille. Cet article se propose de mener une réflexion sur le phénomène de l’alternance de langues en prenant appui sur un corpus enregistré dans un contexte particulier, dit écologique. Ce contexte diffère de la méthode classique par le fait que la collecte des données se fait dans des conditions naturelles sans que le chercheur n’influe sur les interactions qui s’y déroulent. Dans le cadre de cet article, les principales langues en alternances évoquées sont le français et le baoulé (langue kwa de Côte d’Ivoire)

    Short communication Low dose oral iodized oil for control of iodine de®ciency in children

    Get PDF
    In areas where iodized salt is not available, oral iodized oil is often used to correct I de®ciency despite a lack of consensus on the optimal dose or duration of effect, particularly in children, a main target group. Annual doses ranging from 400 to 1000 mg have been advocated for schoolage children. Because lower doses of iodized oil have been shown to be effective in treating I de®ciency in adults, the aim of this study was to evaluate the ef®cacy and safety of a low dose of oral iodized oil in goitrous I-de®cient children. Goitrous children (n 104, mean age 8×4 years, range 6±12 years, 47 % female) received 0×4 ml oral iodized poppyseed-oil containing 200 mg I. Baseline measurements included I in spot urines (UI), serum thyroxine (T 4 ), whole blood thyroidstimulating hormone (TSH), and thyroid-gland volume using ultrasound. At 1, 5, 10, 15, 30 and 50 weeks post-intervention, UI, TSH and T 4 were measured. At 10, 15, 30 and 50 weeks, thyroidgland volume was remeasured. At 30 and 50 weeks the mean percentage change in thyroid volume from baseline was -35 % and -41 % respectively. The goitre rate fell to 38 % at 30 weeks and 17 % at 50 weeks. No child showed signs of I-induced hypo-or hyperthyroidism. UI remained signi®cantly increased above baseline for the entire year (P , 0×001); the median UI at 50 weeks was 97 mg/l, at the World Health Organization cut-off value (100 mg/l) for I-de®ciency disorders risk. In this group of goitrous children, an oral dose of 200 mg I as Lipiodol (Guerbert, Roissy CdG Cedex, France) was safe and effective for treating goitre and maintaining normal I status for at least 1 year

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    Funding Information: The team collaboration and manuscript development are supported by the web-based team science platform: science-i.org, with the project number 202205GFB2. We thank the following initiatives, agencies, teams and individuals for data collection and other technical support: the Global Forest Biodiversity Initiative (GFBI) for establishing the data standards and collaborative framework; United States Department of Agriculture, Forest Service, Forest Inventory and Analysis (FIA) Program; University of Alaska Fairbanks; the SODEFOR, Ivory Coast; University Félix Houphouët-Boigny (UFHB, Ivory Coast); the Queensland Herbarium and past Queensland Government Forestry and Natural Resource Management departments and staff for data collection for over seven decades; and the National Forestry Commission of Mexico (CONAFOR). We thank M. Baker (Carbon Tanzania), together with a team of field assistants (Valentine and Lawrence); all persons who made the Third Spanish Forest Inventory possible, especially the main coordinator, J. A. Villanueva (IFN3); the French National Forest Inventory (NFI campaigns (raw data 2005 and following annual surveys, were downloaded by GFBI at https://inventaire-forestier.ign.fr/spip.php?rubrique159 ; site accessed on 1 January 2015)); the Italian Forest Inventory (NFI campaigns raw data 2005 and following surveys were downloaded by GFBI at https://inventarioforestale.org/ ; site accessed on 27 April 2019); Swiss National Forest Inventory, Swiss Federal Institute for Forest, Snow and Landscape Research WSL and Federal Office for the Environment FOEN, Switzerland; the Swedish NFI, Department of Forest Resource Management, Swedish University of Agricultural Sciences SLU; the National Research Foundation (NRF) of South Africa (89967 and 109244) and the South African Research Chair Initiative; the Danish National Forestry, Department of Geosciences and Natural Resource Management, UCPH; Coordination for the Improvement of Higher Education Personnel of Brazil (CAPES, grant number 88881.064976/2014-01); R. Ávila and S. van Tuylen, Instituto Nacional de Bosques (INAB), Guatemala, for facilitating Guatemalan data; the National Focal Center for Forest condition monitoring of Serbia (NFC), Institute of Forestry, Belgrade, Serbia; the Thünen Institute of Forest Ecosystems (Germany) for providing National Forest Inventory data; the FAO and the United Nations High Commissioner for Refugees (UNHCR) for undertaking the SAFE (Safe Access to Fuel and Energy) and CBIT-Forest projects; and the Amazon Forest Inventory Network (RAINFOR), the African Tropical Rainforest Observation Network (AfriTRON) and the ForestPlots.net initiative for their contributions from Amazonian and African forests. The Natural Forest plot data collected between January 2009 and March 2014 by the LUCAS programme for the New Zealand Ministry for the Environment are provided by the New Zealand National Vegetation Survey Databank https://nvs.landcareresearch.co.nz/. We thank the International Boreal Forest Research Association (IBFRA); the Forestry Corporation of New South Wales, Australia; the National Forest Directory of the Ministry of Environment and Sustainable Development of the Argentine Republic (MAyDS) for the plot data of the Second National Forest Inventory (INBN2); the National Forestry Authority and Ministry of Water and Environment of Uganda for their National Biomass Survey (NBS) dataset; and the Sabah Biodiversity Council and the staff from Sabah Forest Research Centre. All TEAM data are provided by the Tropical Ecology Assessment and Monitoring (TEAM) Network, a collaboration between Conservation International, the Missouri Botanical Garden, the Smithsonian Institution and the Wildlife Conservation Society, and partially funded by these institutions, the Gordon and Betty Moore Foundation and other donors, with thanks to all current and previous TEAM site manager and other collaborators that helped collect data. We thank the people of the Redidoti, Pierrekondre and Cassipora village who were instrumental in assisting with the collection of data and sharing local knowledge of their forest and the dedicated members of the field crew of Kabo 2012 census. We are also thankful to FAPESC, SFB, FAO and IMA/SC for supporting the IFFSC. This research was supported in part through computational resources provided by Information Technology at Purdue, West Lafayette, Indiana.This work is supported in part by the NASA grant number 12000401 ‘Multi-sensor biodiversity framework developed from bioacoustic and space based sensor platforms’ (J. Liang, B.P.); the USDA National Institute of Food and Agriculture McIntire Stennis projects 1017711 (J. Liang) and 1016676 (M.Z.); the US National Science Foundation Biological Integration Institutes grant NSF‐DBI‐2021898 (P.B.R.); the funding by H2020 VERIFY (contract 776810) and H2020 Resonate (contract 101000574) (G.-J.N.); the TEAM project in Uganda supported by the Moore foundation and Buffett Foundation through Conservation International (CI) and Wildlife Conservation Society (WCS); the Danish Council for Independent Research | Natural Sciences (TREECHANGE, grant 6108-00078B) and VILLUM FONDEN grant number 16549 (J.-C.S.); the Natural Environment Research Council of the UK (NERC) project NE/T011084/1 awarded to J.A.-G. and NE/ S011811/1; ERC Advanced Grant 291585 (‘T-FORCES’) and a Royal Society-Wolfson Research Merit Award (O.L.P.); RAINFOR plots supported by the Gordon and Betty Moore Foundation and the UK Natural Environment Research Council, notably NERC Consortium Grants ‘AMAZONICA’ (NE/F005806/1), ‘TROBIT’ (NE/D005590/1) and ‘BIO-RED’ (NE/N012542/1); CIFOR’s Global Comparative Study on REDD+ funded by the Norwegian Agency for Development Cooperation, the Australian Department of Foreign Affairs and Trade, the European Union, the International Climate Initiative (IKI) of the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety and the CGIAR Research Program on Forests, Trees and Agroforestry (CRP-FTA) and donors to the CGIAR Fund; AfriTRON network plots funded by the local communities and NERC, ERC, European Union, Royal Society and Leverhume Trust; a grant from the Royal Society and the Natural Environment Research Council, UK (S.L.L.); National Science Foundation CIF21 DIBBs: EI: number 1724728 (A.C.C.); National Natural Science Foundation of China (31800374) and Shandong Provincial Natural Science Foundation (ZR2019BC083) (H.L.). UK NERC Independent Research Fellowship (grant code: NE/S01537X/1) (T.J.); a Serra-Húnter Fellowship provided by the Government of Catalonia (Spain) (S.d.-M.); the Brazilian National Council for Scientific and Technological Development (CNPq, grant 442640/2018-8, CNPq/Prevfogo-Ibama number 33/2018) (C.A.S.); a grant from the Franklinia Foundation (D.A.C.); Russian Science Foundation project number 19-77-300-12 (R.V.); the Takenaka Scholarship Foundation (A.O.A.); the German Research Foundation (DFG), grant number Am 149/16-4 (C.A.); the Romania National Council for Higher Education Funding, CNFIS, project number CNFIS-FDI-2022-0259 (O.B.); Natural Sciences and Engineering Research Council of Canada (RGPIN-2019-05109 and STPGP506284) and the Canadian Foundation for Innovation (36014) (H.Y.H.C.); the project SustES—Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions (CZ.02.1.01/0.0/0.0/16_019/0000797) (E.C.); Consejo de Ciencia y Tecnología del estado de Durango (2019-01-155) (J.J.C.-R.); Science and Engineering Research Board (SERB), New Delhi, Government of India (file number PDF/2015/000447)—‘Assessing the carbon sequestration potential of different forest types in Central India in response to climate change ’ (J.A.D.); Investissement d’avenir grant of the ANR (CEBA: ANR-10-LABEX-0025) (G.D.); National Foundation for Science & Technology Development of Vietnam, 106-NN.06-2013.01 (T.V.D.); Queensland government, Department of Environment and Science (T.J.E.); a Czech Science Foundation Standard grant (19-14620S) (T.M.F.); European Union Seventh Framework Program (FP7/2007–2013) under grant agreement number 265171 (L. Finer, M. Pollastrini, F. Selvi); grants from the Swedish National Forest Inventory, Swedish University of Agricultural Sciences (J.F.); CNPq productivity grant number 311303/2020-0 (A.L.d.G.); DFG grant HE 2719/11-1,2,3; HE 2719/14-1 (A. Hemp); European Union’s Horizon Europe research project OpenEarthMonitor grant number 101059548, CGIAR Fund INIT-32-MItigation and Transformation Initiative for GHG reductions of Agrifood systems RelaTed Emissions (MITIGATE+) (M.H.); General Directorate of the State Forests, Poland (1/07; OR-2717/3/11; OR.271.3.3.2017) and the National Centre for Research and Development, Poland (BIOSTRATEG1/267755/4/NCBR/2015) (A.M.J.); Czech Science Foundation 18-10781 S (S.J.); Danish of Ministry of Environment, the Danish Environmental Protection Agency, Integrated Forest Monitoring Program—NFI (V.K.J.); State of São Paulo Research Foundation/FAPESP as part of the BIOTA/FAPESP Program Project Functional Gradient-PELD/BIOTA-ECOFOR 2003/12595-7 & 2012/51872-5 (C.A.J.); Danish Council for Independent Research—social sciences—grant DFF 6109–00296 (G.A.K.); Russian Science Foundation project 21-46-07002 for the plot data collected in the Krasnoyarsk region (V.K.); BOLFOR (D.K.K.); Department of Biotechnology, New Delhi, Government of India (grant number BT/PR7928/NDB/52/9/2006, dated 29 September 2006) (M.L.K.); grant from Kenya Coastal Development Project (KCDP), which was funded by World Bank (J.N.K.); Korea Forest Service (2018113A00-1820-BB01, 2013069A00-1819-AA03, and 2020185D10-2022-AA02) and Seoul National University Big Data Institute through the Data Science Research Project 2016 (H.S.K.); the Brazilian National Council for Scientific and Technological Development (CNPq, grant 442640/2018-8, CNPq/Prevfogo-Ibama number 33/2018) (C.K.); CSIR, New Delhi, government of India (grant number 38(1318)12/EMR-II, dated: 3 April 2012) (S.K.); Department of Biotechnology, New Delhi, government of India (grant number BT/ PR12899/ NDB/39/506/2015 dated 20 June 2017) (A.K.); Coordination for the Improvement of Higher Education Personnel (CAPES) #88887.463733/2019-00 (R.V.L.); National Natural Science Foundation of China (31800374) (H.L.); project of CEPF RAS ‘Methodological approaches to assessing the structural organization and functioning of forest ecosystems’ (AAAA-A18-118052590019-7) funded by the Ministry of Science and Higher Education of Russia (N.V.L.); Leverhulme Trust grant to Andrew Balmford, Simon Lewis and Jon Lovett (A.R.M.); Russian Science Foundation, project 19-77-30015 for European Russia data processing (O.M.); grant from Kenya Coastal Development Project (KCDP), which was funded by World Bank (M.T.E.M.); the National Centre for Research and Development, Poland (BIOSTRATEG1/267755/4/NCBR/2015) (S.M.); the Secretariat for Universities and of the Ministry of Business and Knowledge of the Government of Catalonia and the European Social Fund (A. Morera); Queensland government, Department of Environment and Science (V.J.N.); Pinnacle Group Cameroon PLC (L.N.N.); Queensland government, Department of Environment and Science (M.R.N.); the Natural Sciences and Engineering Research Council of Canada (RGPIN-2018-05201) (A.P.); the Russian Foundation for Basic Research, project number 20-05-00540 (E.I.P.); European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement number 778322 (H.P.); Science and Engineering Research Board, New Delhi, government of India (grant number YSS/2015/000479, dated 12 January 2016) (P.S.); the Chilean Government research grants Fondecyt number 1191816 and FONDEF number ID19 10421 (C.S.-E.); the Deutsche Forschungsgemeinschaft (DFG) Priority Program 1374 Biodiversity Exploratories (P.S.); European Space Agency projects IFBN (4000114425/15/NL/FF/gp) and CCI Biomass (4000123662/18/I-NB) (D. Schepaschenko); FunDivEUROPE, European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement number 265171 (M.S.-L.); APVV 20-0168 from the Slovak Research and Development Agency (V.S.); Manchester Metropolitan University’s Environmental Science Research Centre (G.S.); the project ‘LIFE+ ForBioSensing PL Comprehensive monitoring of stand dynamics in Białowieża Forest supported with remote sensing techniques’ which is co-funded by the EU Life Plus programme (contract number LIFE13 ENV/PL/000048) and the National Fund for Environmental Protection and Water Management in Poland (contract number 485/2014/WN10/OP-NM-LF/D) (K.J.S.); Global Challenges Research Fund (QR allocation, MMU) (M.J.P.S.); Czech Science Foundation project 21-27454S (M.S.); the Russian Foundation for Basic Research, project number 20-05-00540 (N. Tchebakova); Botanical Research Fund, Coalbourn Trust, Bentham Moxon Trust, Emily Holmes scholarship (L.A.T.); the programmes of the current scientific research of the Botanical Garden of the Ural Branch of Russian Academy of Sciences (V.A.U.); FCT—Portuguese Foundation for Science and Technology—Project UIDB/04033/2020. Inventário Florestal Nacional—ICNF (H. Viana); Grant from Kenya Coastal Development Project (KCDP), which was funded by World Bank (C.W.); grants from the Swedish National Forest Inventory, Swedish University of Agricultural Sciences (B.W.); ATTO project (grant number MCTI-FINEP 1759/10 and BMBF 01LB1001A, 01LK1602F) (F.W.); ReVaTene/PReSeD-CI 2 is funded by the Education and Research Ministry of Côte d’Ivoire, as part of the Debt Reduction-Development Contracts (C2Ds) managed by IRD (I.C.Z.-B.); the National Research Foundation of South Africa (NRF, grant 89967) (C.H.). The Tropical Plant Exploration Group 70 1 ha plots in Continental Cameroon Mountains are supported by Rufford Small Grant Foundation, UK and 4 ha in Sierra Leone are supported by the Global Challenge Research Fund through Manchester Metropolitan University, UK; the National Geographic Explorer Grant, NGS-53344R-18 (A.C.-S.); University of KwaZulu-Natal Research Office grant (M.J.L.); Universidad Nacional Autónoma de México, Dirección General de Asuntos de Personal Académico, Grant PAPIIT IN-217620 (J.A.M.). Czech Science Foundation project 21-24186M (R.T., S. Delabye). Czech Science Foundation project 20-05840Y, the Czech Ministry of Education, Youth and Sports (LTAUSA19137) and the long-term research development project of the Czech Academy of Sciences no. RVO 67985939 (J.A.). The American Society of Primatologists, the Duke University Graduate School, the L.S.B. Leakey Foundation, the National Science Foundation (grant number 0452995) and the Wenner-Gren Foundation for Anthropological Research (grant number 7330) (M.B.). Research grants from Conselho Nacional de Desenvolvimento Científico e Tecnologico (CNPq, Brazil) (309764/2019; 311303/2020) (A.C.V., A.L.G.). The Project of Sanya Yazhou Bay Science and Technology City (grant number CKJ-JYRC-2022-83) (H.-F.W.). The Ugandan NBS was supported with funds from the Forest Carbon Partnership Facility (FCPF), the Austrian Development Agency (ADC) and FAO. FAO’s UN-REDD Program, together with the project on ‘Native Forests and Community’ Loan BIRF number 8493-AR UNDP ARG/15/004 and the National Program for the Protection of Native Forests under UNDP funded Argentina’s INBN2. Publisher Copyright: © 2022, The Author(s), under exclusive licence to Springer Nature Limited.Peer reviewedPostprin

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers

    NUTRITION EN COTE D'IVOIRE: UN APPEL A L' ACTION

    No full text
    This analysis reviews some of the main nutrition problems in Côte dIvoire and their consequences for three key sectors to national development: health, education, and the economy. The analysis shows that in the absence of adequate policy action, the current monetary value of the productivity losses attributable to malnutrition cases happening between 2001 and 2005 amount to about 545million.Tothesesignificanteconomiclossesneedtobeadded101,500childliveslostbecauseofunderweight;50,300childliveslostbecauseofvitaminAdeficiency;and170,600newbornswithmentalretardationbecauseofintrauterineiodinedeficiency.Onthecontrary,ifoverthesameperiodoftime(20012005)Co^tedIvoirereduced(1)theprevalenceofproteinenergymalnutritioninchildrenbyonethird;(2)theprevalenceofanemiainwomenofreproductiveagebyonethird;(3)theprevalenceofvitaminAdeficiencyinchildrenbyhalf;and(4)theprevalenceofiodinedeficiencyinthepopulationbyhalf,thecurrentvalueofproductivitygainsresultingfromsuchnutritionimprovementwouldamountto 545 million. To these significant economic losses need to be added 101,500 child lives lost because of underweight; 50,300 child lives lost because of vitamin A deficiency; and 170,600 newborns with mental retardation because of intra-uterine iodine deficiency. On the contrary, if over the same period of time (2001-2005) Côte dIvoire reduced (1) the prevalence of protein-energy malnutrition in children by one-third; (2) the prevalence of anemia in women of reproductive age by one-third; (3) the prevalence of vitamin A deficiency in children by half; and (4) the prevalence of iodine deficiency in the population by half, the current value of productivity gains resulting from such nutrition improvement would amount to 96 million. To such economic gains need to be added 16,600 child lives saved as a result of the reduction in underweight levels; 11,000 child lives saved as a result of the reduction in vitamin A deficiency; and 42,000 newborns saved from mental retardation as a result of the reduction in iodine deficiency. Policy action needs to be taken urgently to ensure the necessary resources to control malnutrition in Côte dIvoire. Key Words: Nutrition, Côte dIvoire, Development, advocacy Rsum Cette analyse passe en revue les principaux problèmes nutritionnels en Côte dIvoire et certaines de leurs conséquences sur trois secteurs clés du développement: la santé, léducation et léconomie. Lanalyse révèle que faute dinterventions appropriées, la valeur actuelle de la productivité perdue à cause de la malnutrition se produisant entre 2001 et 2005 sélèverait à 545 million de dollars américains. A cette perte économique sajouteraient 101.500 vies denfants perdues suite au déficit pondéral pour lage; 50.300 vies denfants perdues suite à la carence en vitamine A; et 170.600 nouveau-nés souffrant de retard mental à cause de la carence en iode durant la vie ftale. Si entre 2001 et 2005 la Côte dIvoire sengageait à (1) réduire dun tiers la prévalence la malnutrition protéino-énergétique chez les enfants de moins de cinq ans, (2) réduire dun tiers la prévalence de lanémie chez les femmes en âge de procréer, (3) réduire de moitié la prévalence de la carence en vitamine A chez les enfants de moins de cinq ans et (4) réduire de moitié la prévalence de la carence en iode dans la population, la valeur actuelle de la productivité gagnée suite à latteinte de ces objectifs sélèverait à 96 millions de dollars américains. A ce gain économique il faudrait ajouter 16.600 vies denfants sauvées suite à la réduction de la prévalence du déficit pondéral pour lage; 11.000 vies denfants sauvées suite à lélimination de la carence en vitamine A; et 42.500 nouveau-nés sauvés du retard mental suite à la réduction de la carence en iode. Assurer les ressources nécessaires pour la lutte contre la malnutrition en Côte dIvoire devient une urgence nationale. Mots cles: Nutrition, Côte dIvoire, Développement, plaidoyer (Af. J. of Food and Nutritional Sciences: 2002 2(2): 86-91
    corecore