676 research outputs found

    Installation of autonomous underway pCO2 instruments onboard ships of opportunity

    Get PDF
    The oceans are the largest sustained sink of anthropogenic carbon with a flux into the ocean of about 2.4 1015 grams, or 2.4 gigatons, of carbon annually, thereby partially mitigating the rapid increase of this climate-forcing gas into the atmosphere. To provide meaningful projections of future atmospheric CO2 levels and surface oceanic CO2 concentrations, we must constrain the flux of CO2 across the air-water interface. An important component of this effort is to obtain more systematic observations of CO2 in the ocean by installing autonomous systems—underway pCO2 analyzers—on ships of opportunity. The purpose of this technical report is to provide the necessary information required to perform such an installation. The information it contains pertains specifically to the installation of the system built by General Oceanics, Inc. in Miami, Florida

    « Avancer par nappes » : de l’histoire de la sidérurgie à l’histoire de l’emballage, en passant par l’archéologie industrielle.

    Get PDF
    Bonjour Denis Woronoff. C’est un plaisir pour nous de vous interroger sur vos travaux vos recherches. Pouvez-vous nous dire tout d’abord ce qui vous a amené à devenir historien ? J’ai toujours été historien. Si loin que je remonte dans mon enfance, c’était la seule chose qui me mobilisait. Le fait d’avoir un nom russe et un père récent naturalisé m’a sans doute poussé à savoir d’où je venais. Un moment, j’ai rêvé être journaliste, puis j’ai failli être philosophe, impressionné à l’Ecole alsac..

    A multi-decade record of high quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)

    Get PDF
    The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) “living data” publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). Individual data set files, included in the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here: doi:10.3334/CDIAC/OTG.SOCAT_V3_GRID

    Ostéoporose et évaluation du risque fracturaire par l’outil frax chez des patients Congolais présentant un rhumatisme axial : Une série des cas multicentriques

    Get PDF
    Contexte et objectif. L’enjeu majeur dans le management de l’ostéoporose est l’identification des sujets à risque par la quantification du risque fracturaire. L’objectif de l’étude était d’évaluer le risque fracturaire chez les patients ayant consulté pour douleur du squelette axial. Méthodes. Il s’agissait d’une série des cas multicentriques menée sur des patients recrutés dans 8 hôpitaux de Kinshasa. Les paramètres d’intérêt comme l’âge, le sexe, l’alcoolisme, le tabagisme, la fracture de hanche chez un parent de 1er degré ou une fracture personnelle de fragilité ont été collectés auprès de chaque patient. La mesure de la densité osseuse avait été réalisée par absorptiométrie biphotonique à rayons X. Le risqué fracturaire a été évalué par le calcul de l’indice fracturaire FRAX. Ce risque était élevé lorsque la probabilité de survenue de fracture de hanche était ≥ 3% et/ou des fractures ostéoporotiques majeures ≥ 20%. Des tests statistiques usuels ont été utilisés pour l’analyse des résultats. Résultats. 90 patients dont 75 femmes étaient inclus. Leur âge moyen était de 63,5±12 ans. L’ostéoporose était diagnostiquée chez 34,4% des patients, l’ostéopénie chez 43,9% et 16,7% avaient une densité minérale osseuse normale. Aucune fracture ostéoporotique n’a été observée dans la présente étude, mais près de 30% de l’ensemble de l’échantillon avaient un risque fracturaire élevé. L’ostéoporose était associée, dans environ 80% des cas (p<0,005), à un risqué fracturaire élevé. Conclusion. La présente étude a montré que le risque fracturaire était élevé chez les patients atteints d’ostéoporose. Elle met en lumière la nécessité d’un dépistage précoce de cette pathologie. English title: Osteoporosis and assessment of fracturary risk using the frax tool in Congolese patients with axial rheumatism: A multicenter case series Context and objective. The major challenge in the management of osteoporosis is the identification of subjects at risk by quantifying the fracture risk in order to prevent the fracture cascade. The aim of the present study was to evaluate the fracture risk in patients who had consulted for axial skeletal pain. Methods. This was a multicenter case series carried out on patients with axial rheumatism recruited in 8 hospitals in Kinshasa. The parameters of interest such as age, sex, alcoholism, smoking, hip fracture in a 1st degree relative or personal fragility fracture were collected from each patient. Bone mineral density was measured by dual energy x-ray absorptiometry. Fracture risk was assessed by calculating the FRAX fracture index. This risk was considered high when the probability of occurrence of a hip fracture was ≥ 3% and/or major osteoporotic fractures ≥ 20%. Standard statistical tests were used to analyze the results. Results. 90 patients including 75 women (83.3%) were involved. Their average age was 63.5±12 years. Osteoporosis was diagnosed in 34.4% of patients, osteopenia in 43.9% of patients and 16.7% of patients had normal bone mineral density. No osteoporotic fractures were observed, but nearly 30% of the entire sample had a high fracture risk. Osteoporosis (T-score ≤-2.5) was associated, in approximately 80% of cases (p<0.005), with a high fracture risk. Conclusion. The present study showed that fracture risk was very high in patients with osteoporosis. It highlights the need for early detection of this pathology. Keywords: Osteoporosis, axial rheumatism, fracturary risk, FRA

    Gaining insights into the seawater carbonate system using discrete fCO2 measurements

    Get PDF
    Understanding the ocean carbon sink and its future acidification-derived changes requires accurate and precise measurements with good spatiotemporal coverage. In addition, a deep knowledge of the thermodynamics of the seawater carbonate system is key to interconverting between measured and calculated variables. To gain insights into the remaining inconsistencies in the seawater carbonate system, we assess discrete water column measurements of carbon dioxide fugacity (fCO2), dissolved inorganic carbon (DIC), total alkalinity (TA), and pH measured with unpurified indicators, from hydrographic cruises in the Atlantic, Pacific, and Southern Oceans included in GLODAPv2.2020 (19,013 samples). An agreement of better than ±3% between fCO2 measured and calculated from DIC and pH is obtained for 94% of the compiled dataset, while when considering fCO2 measured and calculated from DIC and TA, the agreement is better than ±4% for 88% of the compiled dataset, with a poorer internal consistency for high-CO2 waters. Inspecting all likely sources of uncertainty from measured and calculated variables, we conclude that the seawater carbonate system community needs to (i) further refine the thermodynamic model of the seawater carbonate system, especially K2, including the impact of organic compounds and other acid-base systems on TA; (ii) update the standard operating procedures for the seawater carbonate system measurements following current technological and analytical advances, paying particular attention to the pH methodology that is the one that evolved the most; (iii) encourage measuring discrete water column fCO2 to further check the internal consistency of the seawater carbonate system, especially given the new era of sensor-based seawater measurements; and (iv) develop seawater Certified Reference Materials (CRMs) for fCO2 and pH together with seawater CRMs for TA and DIC over the range of values encountered in the global ocean. Our conclusions also suggest the need for a re-evaluation of the adjustments applied by GLODAPv2 to pH, which were based on DIC and TA consistency checks but not supported by fCO2 and DIC consistency

    Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay

    Get PDF
    The combined effects of anthropogenic and biological CO2 inputs may lead to more rapid acidification in coastal waters compared to the open ocean. It is less clear, however, how redox reactions would contribute to acidification. Here we report estuarine acidification dynamics based on oxygen, hydrogen sulfide (H2S), pH, dissolved inorganic carbon and total alkalinity data from the Chesapeake Bay, where anthropogenic nutrient inputs have led to eutrophication, hypoxia and anoxia, and low pH. We show that a pH minimum occurs in mid-depths where acids are generated as a result of H2S oxidation in waters mixed upward from the anoxic depths. Our analyses also suggest a large synergistic effect from river-ocean mixing, global and local atmospheric CO2 uptake, and CO2 and acid production from respiration and other redox reactions. Together they lead to a poor acid buffering capacity, severe acidification and increased carbonate mineral dissolution in the USA\u27s largest estuary

    Sensory Processing of Motor Inaccuracy Depends on Previously Performed Movement and on Subsequent Motor Corrections: A Study of the Saccadic System

    Get PDF
    When goal-directed movements are inaccurate, two responses are generated by the brain: a fast motor correction toward the target and an adaptive motor recalibration developing progressively across subsequent trials. For the saccadic system, there is a clear dissociation between the fast motor correction (corrective saccade production) and the adaptive motor recalibration (primary saccade modification). Error signals used to trigger corrective saccades and to induce adaptation are based on post-saccadic visual feedback. The goal of this study was to determine if similar or different error signals are involved in saccadic adaptation and in corrective saccade generation. Saccadic accuracy was experimentally altered by systematically displacing the visual target during motor execution. Post-saccadic error signals were studied by manipulating visual information in two ways. First, the duration of the displaced target after primary saccade termination was set at 15, 50, 100 or 800 ms in different adaptation sessions. Second, in some sessions, the displaced target was followed by a visual mask that interfered with visual processing. Because they rely on different mechanisms, the adaptation of reactive saccades and the adaptation of voluntary saccades were both evaluated. We found that saccadic adaptation and corrective saccade production were both affected by the manipulations of post-saccadic visual information, but in different ways. This first finding suggests that different types of error signal processing are involved in the induction of these two motor corrections. Interestingly, voluntary saccades required a longer duration of post-saccadic target presentation to reach the same amount of adaptation as reactive saccades. Finally, the visual mask interfered with the production of corrective saccades only during the voluntary saccades adaptation task. These last observations suggest that post-saccadic perception depends on the previously performed action and that the differences between saccade categories of motor correction and adaptation occur at an early level of visual processing

    A surface ocean CO2 reference network, SOCONET and associated marine boundary layer CO2 measurements

    Get PDF
    The Surface Ocean CO2 NETwork (SOCONET) and atmospheric Marine Boundary Layer (MBL) CO2 measurements from ships and buoys focus on the operational aspects of measurements of CO2 in both the ocean surface and atmospheric MBLs. The goal is to provide accurate pCO2 data to within 2 micro atmosphere (μatm) for surface ocean and 0.2 parts per million (ppm) for MBL measurements following rigorous best practices, calibration and intercomparison procedures. Platforms and data will be tracked in near real-time and final quality-controlled data will be provided to the community within a year. The network, involving partners worldwide, will aid in production of important products such as maps of monthly resolved surface ocean CO2 and air-sea CO2 flux measurements. These products and other derivatives using surface ocean and MBL CO2 data, such as surface ocean pH maps and MBL CO2 maps, will be of high value for policy assessments and socio-economic decisions regarding the role of the ocean in sequestering anthropogenic CO2 and how this uptake is impacting ocean health by ocean acidification. SOCONET has an open ocean emphasis but will work with regional (coastal) networks. It will liaise with intergovernmental science organizations such as Global Atmosphere Watch (GAW), and the joint committee for and ocean and marine meteorology (JCOMM). Here we describe the details of this emerging network and its proposed operations and practices

    Best practice data standards for discrete chemical oceanographic observations

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jiang, L.-Q., Pierrot, D., Wanninkhof, R., Feely, R. A., Tilbrook, B., Alin, S., Barbero, L., Byrne, R. H., Carter, B. R., Dickson, A. G., Gattuso, J.-P., Greeley, D., Hoppema, M., Humphreys, M. P., Karstensen, J., Lange, N., Lauvset, S. K., Lewis, E. R., Olsen, A., Pérez, F. F., Sabine, C., Sharp, J. D., Tanhua, T., Trull, T. W., Velo, A., Allegra, A. J., Barker, P., Burger, E., Cai, W-J., Chen, C-T. A., Cross, J., Garcia, H., Hernandez-Ayon J. M., Hu, X., Kozyr, A., Langdon, C., Lee., K, Salisbury, J., Wang, Z. A., & Xue, L. Best practice data standards for discrete chemical oceanographic observations. Frontiers in Marine Science, 8, (2022): 705638, https://doi.org/10.3389/fmars.2021.705638.Effective data management plays a key role in oceanographic research as cruise-based data, collected from different laboratories and expeditions, are commonly compiled to investigate regional to global oceanographic processes. Here we describe new and updated best practice data standards for discrete chemical oceanographic observations, specifically those dealing with column header abbreviations, quality control flags, missing value indicators, and standardized calculation of certain properties. These data standards have been developed with the goals of improving the current practices of the scientific community and promoting their international usage. These guidelines are intended to standardize data files for data sharing and submission into permanent archives. They will facilitate future quality control and synthesis efforts and lead to better data interpretation. In turn, this will promote research in ocean biogeochemistry, such as studies of carbon cycling and ocean acidification, on regional to global scales. These best practice standards are not mandatory. Agencies, institutes, universities, or research vessels can continue using different data standards if it is important for them to maintain historical consistency. However, it is hoped that they will be adopted as widely as possible to facilitate consistency and to achieve the goals stated above.Funding for L-QJ and AK was from NOAA Ocean Acidification Program (OAP, Project ID: 21047) and NOAA National Centers for Environmental Information (NCEI) through NOAA grant NA19NES4320002 [Cooperative Institute for Satellite Earth System Studies (CISESS)] at the University of Maryland/ESSIC. BT was in part supported by the Australia’s Integrated Marine Observing System (IMOS), enabled through the National Collaborative Research Infrastructure Strategy (NCRIS). AD was supported in part by the United States National Science Foundation. AV and FP were supported by BOCATS2 Project (PID2019-104279GB-C21/AEI/10.13039/501100011033) funded by the Spanish Research Agency and contributing to WATER:iOS CSIC interdisciplinary thematic platform. MH was partly funded by the European Union’s Horizon 2020 Research and Innovation Program under grant agreement N°821001 (SO-CHIC)

    Global carbon budget 2019

    Get PDF
    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use change (ELUC), mainly deforestation, are based on land use and land use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2009–2018), EFF was 9.5±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.9±0.02 GtC yr−1 (2.3±0.01 ppm yr−1), SOCEAN 2.5±0.6 GtC yr−1, and SLAND 3.2±0.6 GtC yr−1, with a budget imbalance BIM of 0.4 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2018 alone, the growth in EFF was about 2.1 % and fossil emissions increased to 10.0±0.5 GtC yr−1, reaching 10 GtC yr−1 for the first time in history, ELUC was 1.5±0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5±0.9 GtC yr−1 (42.5±3.3 GtCO2). Also for 2018, GATM was 5.1±0.2 GtC yr−1 (2.4±0.1 ppm yr−1), SOCEAN was 2.6±0.6 GtC yr−1, and SLAND was 3.5±0.7 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 407.38±0.1 ppm averaged over 2018. For 2019, preliminary data for the first 6–10 months indicate a reduced growth in EFF of +0.6 % (range of −0.2 % to 1.5 %) based on national emissions projections for China, the USA, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. Overall, the mean and trend in the five components of the global carbon budget are consistently estimated over the period 1959–2018, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations shows (1) no consensus in the mean and trend in land use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018a, b, 2016, 2015a, b, 2014, 2013). The data generated by this work are available at https://doi.org/10.18160/gcp-2019 (Friedlingstein et al., 2019)
    corecore