102 research outputs found

    Further developments in stress initialization in geomechanics via FEM and a two-step procedure involving airy functions

    Get PDF
    The in-situ stress field in rock masses is a key aspect when a numerical analysis of a rock mass is carried out in any area of geo-engineering, such as civil, mining, or Oil & Gas. A method for the numerical generation of the in-situ stress state in the FE context, based on Airy stress functions was previously introduced. It involves two steps: 1) an estimate of the stress state at each Gauss point is generated, and 2) global equilibrium is verified and re-balancing nodal forces are applied as needed. In this paper, new developments towards improving the accuracy of the stress proposal are discussed. A real application example has been used to illustrate the results achieved with the new implementation

    Crecimiento y desarrollo gonadal de rodaballos (Scophthalmus maximus L.) triploides hasta los 18 meses de edad

    Get PDF
    El objetivo de este trabajo fue determinar los efectos de la triploidía sobre el crecimiento, proporción de sexos y desarrollo gonadal de los rodaballos (Scophthalmus maximus L.) hasta los 18 meses de edad. Los resultados obtenidos demostraron una proporción significativamente mayor de hembras en el grupo triploide respecto del control diploide, un crecimiento significativamente superior, en el mismo grupo, y un desarrollo gonadal significativamente inferior en los triploides, especialmente en las hembra

    Evidences for a role of two Y-specific genes in sex determination in Populus deltoides

    Get PDF
    This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Almost all plants in the genus Populus are dioecious (i.e. trees are either male or female), but it is unknown whether dioecy evolved in a common ancestor or independently in different subgenera. Here, we sequence the small peritelomeric X- and Y-linked regions of P. deltoides chromosome XIX. Two genes are present only in the Y-linked region. One is a duplication of a non-Y-linked, female-specifically expressed response regulator, which produces siRNAs that block this gene’s expression, repressing femaleness. The other is an LTR/Gypsy transposable element family member, which generates long non-coding RNAs. Overexpression of this gene in A. thaliana promotes androecium development. We also find both genes in the sex-determining region of P. simonii, a different poplar subgenus, which suggests that they are both stable components of poplar sex-determining systems. By contrast, only the duplicated response regulator gene is present in the sex-linked regions of P. davidiana and P. tremula. Therefore, findings in our study suggest dioecy may have evolved independently in different poplar subgenera
    corecore