195 research outputs found
Structural Disorder, Octahedral Coordination, and 2-Dimensional Ferromagnetism in Anhydrous Alums
The crystal structures of the triangular lattice, layered anhydrous alums
KCr(SO4)2, RbCr(SO4)2 and KAl(SO4)2 are characterized by X-ray and neutron
powder diffraction at temperatures between 1.4 and 773 K. The compounds all
crystallize in the space group P-3, with octahedral coordination of the
trivalent cations. In all cases, small amounts of disorder in the stacking of
the triangular layers of corner sharing MO6 octahedra and SO4 tetrahedra is
seen, with the MO6-SO4 network rotated in opposite directions between layers.
The electron diffraction study of KCr(SO4)2 supports this model, which on
average can be taken to imply trigonal prismatic coordination for the M3+ ions;
as was previously reported for the prototype anhydrous alum KAl(SO4)2. The
temperature dependent magnetic susceptibilities for ACr(SO4)2 (A = K,Rb,Cs)
indicate the presence of predominantly ferromagnetic interactions. Low
temperature powder neutron diffraction reveals that the magnetic ordering is
ferromagnetic in-plane, with antiferromagnetic ordering between planes below 3
K.Comment: Accepted to the Journal of Solid State Chemistr
K0.8Ag0.2Nb4O9AsO4
The title compound, potassium silver tetraniobium nonaoxide arsenate, K0.8Ag0.2Nb4O9AsO4, was prepared by a solid-state reaction at 1183 K. The structure consists of infinite (Nb2AsO14)n chains parallel to the b axis and cross-linked by corner sharing via pairs of edge-sharing octahedra. Each pair links together four infinite chains to form a three-dimensional framework. The K+ and Ag+ ions partially occupy several independent close positions in the interconnected cavities delimited by the framework. K0.8Ag0.2Nb4O9AsO4 is likely to exhibit fast alkali-ion mobility and ion-exchange properties. The Wyckoff symbols of special positions are as follows: one Nb 8e, one Nb 8g, As 4c, two K 8f, one Ag 8f, one Ag 4c, one O 8g, one O 4c
Vanadium(V) oxide arsenate(V), VOAsO4
The vanadyl arsenate, VOAsO4, has been isolated by a solid-state reaction. The structure consists of distorted VO6 octahedra and AsO4 tetrahedra sharing corners to build up VAsO7 layers parallel to ac linked by edge-sharing of VO6 octahedra, forming a three-dimensional framework
La variété β-NaMoO2(AsO4)
The title compound, sodium dioxidomolybdenum(VI) arsenate(V), β-NaMoO2AsO4, was prepared by solid-state reaction at 953 K. In the crystal structure, the AsO4 tetrahedra and MoO6 octahedra (both with m symmetry) share corner atoms to form a three-dimensional framework that delimits cavities parallel to [010] where disordered six-coordinated sodium cations (half-occupation) are located. Structural relationships between the different orthoarsenates of the AMoO2AsO4 series (A = Ag, Li, Na, K and Rb) are discussed
AgNa2Mo3O9AsO4
The title compound, silver disodium trimolybdenum(VI) nonaoxide arsenate, AgNa2Mo3O9AsO4, was prepared by a solid-state reaction at 808 K. The structure consists of an infinite (Mo3AsO13)n ribbon, parallel to the c axis, composed of AsO4 tetrahedra and MoO6 octahedra sharing edges and corners. The Na and Ag ions partially occupy several independent close positions, with various occupancies, in the inter-ribbon space delimited by the one-dimensional framework. The composition was refined to Ag1.06(1)Na1.94(1)Mo3O9AsO4
Conception d’observateurs pour la commande d’un système pile à combustible embarqué en vue d’optimiser performances et durabilité
Fuel cells are considered as a promising source of energy for the future, thanks to their non-polluting aspect. However, the deployment of these solutions on a large scale is still conditioned by the improvement of their performance and especially of their durability in order to guarantee a low cost industrialization. The transport application also imposes a variable power demand, which complicates the improvement of performance and durability. The approach adopted for this work consists of the design of a system management law that generates the optimal operating conditions to be applied to the stack (pressures, temperature, current, stoichiometries) as a function of the power demand, the state of health (active surface loss) and current humidity. Optimality is understood in the sense of increasing system efficiency and decreasing the degradation of the membrane and the platinum dissolution. This law is based on degradation and performance models of a fuel cell system. This management law requires in real time the data of the state of health of the fuel cell and the humidity rate. The assessment of the state of health is already the subject of many diagnostic work. On the other hand, the humidity rate must be estimated by a state observer because the humidity sensors are not reliable for a transport application. Therefore, a state observer was developed to estimate the relative humidities in the stack channels and also the membrane water content, the hydrogen at the anode as well as the nitrogen saturation at the anode. This last data makes it possible to propose a purge strategy for a dead-end architecture, based on nitrogen saturation, which limits the losses in hydrogen and reduces the damage associated with this architecture.Les piles à combustibles sont considérées comme une énergie d’avenir, notamment grâce à leur caractère non polluant à l’usage. Cependant, le déploiement de ces solutions à grande échelle est encore conditionné par l’amélioration de leurs performances et surtout de leur durabilité afin de garantir une industrialisation à faible coût. L’application de la pile à combustible au domaine des transports impose en plus un fonctionnement à puissance variable, ce qui complique l’amélioration des performances et de la durabilité. L’approche retenue pour ces travaux consiste en la conception d’une loi de gestion du système qui génère les conditions opératoires optimales à appliquer au stack (pressions, température, courant, stoechiométries) en fonction de la demande en puissance, de l’état de santé de la pile (perte de surface active) et du taux d’humidité actuel. L’optimalité est entendue au sens de l’augmentation du rendement système et de la diminution des dégradations du platine et de la membrane. Cette loi se base sur des modèles de dégradations et de performances d’un système pile à combustible. Cette loi de gestion requiert pour fonctionner les données de l’état de santé de la pile et du taux d’humidité. L’évaluation de l’état de santé de la pile fait déjà l’objet de nombreux travaux de diagnostic. En revanche, le taux d’humidité doit être estimé par un observateur d’état car les capteurs d’humidité ne sont pas fiables pour une application transport. Pour cela, un observateur d’état a été développé pour estimer les humidités relatives dans les canaux du stack et aussi le chargement en eau de la membrane, la quantité d’hydrogène à l’anode ainsi que la saturation d’azote à l’anode. Cette dernière donnée permet de proposer une stratégie de purge pour une architecture dead-end basée sur la saturation d’azote, qui limite les pertes en hydrogène et réduit les dégradations liées à cette architecture
- …
