30 research outputs found
Global Assessment of Grassland Carrying Capacities and Relative Stocking Densities of Livestock
Although many suggest that future diets should include more plant-based proteins, animal-sourced foods are unlikely to completely disappear from our diet. Grasslands yield a notable part of the world’s animal protein production, but thus far, there is no global insight into the relationship between current livestock stocking densities and the availability of grassland forage resources. This inhibits acting upon concerns over the negative effects of overgrazing in some areas and utilising the potential for increasing production in others. Previous research has examined the potential of sustainable grazing but lacks generic and observation-based methods needed to fully understand the opportunities and threats of grazing. Here we provide a novel framework and method to estimate global livestock carrying capacity and relative stocking density, i.e. the reported livestock distribution relative to the estimated carrying capacity. We first estimate the aboveground biomass that is available for grazers on grasslands and savannas based on the MODIS Net Primary Production (NPP) approach on a global scale. This information is then used to calculate reasonable livestock carrying capacities, using slopes, forest cover and animal forage requirements as restrictions. With this approach, we found that stocking rates exceed the forage provided by grasslands in northwestern Europe, midwestern United States, southern China and the African Sahel. In this study, we provide the highest resolution global datasets to date. Our results have implications for prospective global food system modelling as well as national agricultural and environmental policies. These maps and findings can assist with conservation efforts to reduce land degradation associated with overgrazing and help identify undergrazed areas for targeted sustainable intensification efforts
Tumor cell-specific AIM2 regulates growth and invasion of cutaneous squamous cell carcinoma
Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer. Inflammation is a typical feature in cSCC progression. Analysis of the expression of inflammasome components in cSCC cell lines and normal human epidermal keratinocytes revealed upregulation of the expression of AIM2 mRNA and protein in cSCC cells. Elevated levels of AIM2 mRNA were noted in cSCCs in vivo compared with normal skin. Strong and moderate tumor cell specific expression of AIM2 was detected with immunohistochemistry (IHC) in sporadic human cSCCs in vivo, whereas expression of AIM2 was moderate in cSCC in situ (cSCCIS) and low or absent in actinic keratosis (AK) and normal skin. IHC of cSCCs, cSCCIS and AKs from organ transplant recipients also revealed strong and moderate tumor cell specific expression of AIM2 in cSCCs. Knockdown of AIM2 resulted in reduction in viability of cSCC cells and onset of apoptosis. RNA-seq and pathway analysis after knockdown of AIM2 in cSCC cells revealed downregulation of the biofunction category Cell cycle and upregulation of the biofunction category Cell Death and Survival. Knockdown of AIM2 also resulted in reduction in invasion of cSCC cells and downregulation in production of invasion proteinases MMP1 and MMP13. Knockdown of AIM2 resulted in suppression of growth and vascularization of cSCC xenografts in vivo. These results provide evidence for the role of AIM2 in the progression of cSCC and identify AIM2 inflammasome function as a potential therapeutic target in these invasive and metastatic tumors.</p
Expression of claudin-11 by tumor cells in cutaneous squamous cell carcinoma is dependent on the activity of p38δ
The incidence of cutaneous squamous cell carcinoma (cSCC) is rapidly increasing, and the prognosis of patients with metastatic disease is poor. There is an emerging need to identify molecular markers for predicting aggressive behaviour of cSCC. Here, we have examined the role of tight junction (TJ) components in the progression of cSCC. The expression pattern of mRNAs for TJ components was determined with RNA sequencing and oligonucleotide array-based expression analysis from cSCC cell lines (n=8) and normal human epidermal keratinocytes (NHEK, n=5). The expression of CLDN11 was specifically elevated in primary cSCC cell lines (n=5), but low or absent in metastatic cSCC cell lines (n=3) and NHEKs. Claudin-11 was detected in cell-cell contacts of primary cSCC cells in culture by indirect immunofluorescence analysis. Analysis of a large panel of tissue samples from sporadic UV-induced cSCC (n=65), cSCC in situ (n=56), actinic keratoses (n=31), seborrhoeic keratoses (n=7) and normal skin (n=16) by immunohistochemistry showed specific staining for claudin-11 in intercellular junctions of keratinizing tumor cells in well and moderately differentiated cSCCs, whereas no staining for claudin-11 was detected in poorly differentiated tumors. The expression of claudin-11 in cSCC cells was dependent on the activity of p38 delta MAPK and knock-down of claudin-11 enhanced cSCC cell invasion. These findings provide evidence for the role of claudin-11 in regulation of cSCC invasion and suggest loss of claudin-11 expression in tumor cells as a biomarker for advanced stage of cSCC
Quantifying Earth system interactions for sustainable food production via expert elicitation
Several safe boundaries of critical Earth system processes have already been crossed due to human perturbations; not accounting for their interactions may further narrow the safe operating space for humanity. Using expert knowledge elicitation, we explored interactions among seven variables representing Earth system processes relevant to food production, identifying many interactions little explored in Earth system literature. We found that green water and land system change affect other Earth system processes strongly, while land, freshwater and ocean components of biosphere integrity are the most impacted by other Earth system processes, most notably blue water and biogeochemical flows. We also mapped a complex network of mechanisms mediating these interactions and created a future research prioritization scheme based on interaction strengths and existing knowledge gaps. Our study improves the understanding of Earth system interactions, with sustainability implications including improved Earth system modelling and more explicit biophysical limits for future food production
Transition in the forest sector of the republic of Karelia, Russia
This study examines the institutional setting of the forest sector in the Republic of Karelia, Northwestern Russia. Institutional settings are understood to include formal laws and regulations, as well as informal rules and social constraints that regulate the interaction of the actors in the regional forest sector. This study scrutinizes the actors’ interactions in relation to the attributes of rules-in-use, community and the forest resources, and outcomes from the interactions according to the Institutional Analysis and Development framework. Within this framework actors’ positions in the restructuring process from the planned economy towards functioning in the market are evaluated. The study explicates that, even if the sectoral restructuring has been going on for years, enterprises and organizations still negotiate about the outcomes of their interactions in favor of options which do not require too expensive investments towards the restructuring of their business practices. In addition, restructuring and reorganization is not just an economic process related to business practices and transactions. It is also entangled with other social and spatial structures and practices. This is most clearly visible in the social responsibilities of the enterprises and in their close connections to local communities. As a result, the current development of the forest sector is divergent
