349 research outputs found
Surface Ozone Variability and Trends over the South African Highveld from 1990 to 2007
Surface ozone is a secondary air pollutant formed from reactions between nitrogen oxides (NOx = NO + NO2) and volatile organic compounds in the presence of sunlight. In this work we examine effects of the climate pattern known as the El Nio-Southern Oscillation (ENSO) and NOx variability on surface ozone from 1990 to 2007 over the South African Highveld, a heavily populated region in South Africa with numerous industrial facilities. Over summer and autumn (December-May) on the Highveld, El Nio, as signified by positive sea surface temperature (SST) anomalies over the central Pacific Ocean, is typically associated with drier and warmer than normal conditions favoring ozone formation. Conversely, La Nia, or negative SST anomalies over the central Pacific Ocean, is typically associated with cloudier and above normal rainfall conditions, hindering ozone production. We use a generalized regression model to identify any linear dependence that the Highveld ozone, measured at five air quality monitoring stations, may have on ENSO and NOx. Our results indicate that four out of the five stations exhibit a statistically significant sensitivity to ENSO at some point over the December-May period where El Nio amplifies ozone formation and La Nia reduces ozone formation. Three out of the five stations reveal statistically significant sensitivity to NOx variability, primarily in winter and spring. Accounting for ENSO and NOx effects throughout the study period of 18 years, two stations exhibit statistically significant negative ozone trends in spring, one station displays a statistically significant positive trend in August, and two stations show no statistically significant change in surface ozone
Aerosol-Radiation-Cloud Interactions in the South-East Atlantic: First Results from the ORACLES-2016 Deployment and Plans for Future Activities
Southern Africa produces almost a third of the Earths biomass burning (BB) aerosol particles. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical stratocumulus (Sc) cloud decks in the world. The SE Atlantic stratocumulus deck interacts with the dense layers of BB aerosols that initially overlay the cloud deck, but later subside and may mix into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects, and their global representation in climate models remains one of the largest uncertainties in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for regional and global climate change predictions.Our understanding of aerosol-cloud interactions in the SE Atlantic is severely limited. Most notably, we are missing knowledge on the absorptive and cloud nucleating properties of aerosols, including their vertical distribution relative to clouds, on the locations and degree of aerosol mixing into clouds, on the processes that govern cloud property adjustments, and on the importance of aerosol effects on clouds relative to co-varying synoptic scale meteorology.We describe first results from various synergistic, international research activities aimed at studying aerosol-cloud interactions in the region:NASAs airborne ORACLES (ObseRvations of Aerosols Above Clouds and Their IntEractionS) deployment in AugustSeptember of 2016,the DoEs LASIC (Layered Atlantic Smoke Interactions with Clouds) deployment of the ARM Mobile Facility to Ascension Island (June 2016 October 2017), the ground-based components of CNRS AEROCLO-sA (Aerosols Clouds and Fog over the west coast of southern Africa), and ongoing regional-scale integrative, process-oriented science efforts as part of SEALS-sA (Sea Earth Atmosphere Linkages Study in southern Africa).We expect to describe experimental setups as well as showcase initial aerosol and cloud property distributions. Furthermore, we discuss the implementation of future activities in these programs in coordination with the UK Met Offices CLARIFY (CLoud-Aerosol-Radiation Interactions and Forcing) experiment in 2017
Smoke and clouds above the Southeast Atlantic: upcoming field campaigns probe absorbing aerosol’s impact on climate
ArticleFrom July through October, smoke from biomass burning fires on the southern African sub-continent are transported westward through the free troposphere over one of the largest stratocumulus cloud decks on our planet. Biomass burning aerosol (smoke) absorbs shortwave radiation efficiently. This fundamental property implicates smoke within myriad small-scale processes with potential large-scale impacts on climate that are not yet well-understood. A coordinated, international team of scientists from the United States, United Kingdom, France, South Africa and Namibia will provide an unprecedented interrogation of this smoke-and-cloud regime from 2016 to 2018, using multiple aircraft and surface-based instrumentation suites to span much of the breadth of the southeast Atlantic
Fractional solubility of iron in mineral dust aerosols over coastal Namibia: a link to marine biogenic emissions?
This paper presents the first investigation of the solubility of iron in mineral dust aerosols collected at the Henties Bay Aerosol Observatory (HBAO), in Namibia, from April to December 2017. During the study period, 10 intense dust events occurred. Elemental iron reached peak concentrations as high as 1.5µgm−3, significantly higher than background levels. These events are attributed to wind erosion of natural soils from the surrounding gravel plains of the Namib desert. The composition of the sampled dust is found to be overall similar to that of aerosols from northern Africa but is characterized by persistent and high concentrations of f luorine which are attributed to local fugitive dust. The fractional solubility of Fe (%SFe) for both the identified dust episodes and background conditions ranged between 1.3% and 20%andaveraged at 7.9% (±4.1%) and 6.8 (±3.3%), respectively. Even under background conditions, the %SFe was correlated with that of Al and Si. The solubility was lower between June and August and increased from September onwards during the austral spring. The relation to measured concentrations of particulate MSA (methane sulfonic acid), solar irradiance, and wind speed suggests a possible two-way interaction whereby marine biogenic emissions from the coastal Benguela upwelling to the atmosphere would increase the solubility of iron-bearing dust according to the photo-reduction processes. This first investigation points to the western coast of southern Africa as a complex environment with multiple processes and active exchanges between the atmosphere and the Atlantic Ocean, requiring further researchThis work received funding from the French Centre National de la Recherche Scientifique (CNRS) and the South African National Research Foundation (NRF) through the Groupement de Recherche Internationale Atmospheric Research in southern Africa and the Indian Ocean (GDRI-ARSAIO), the Project International de Coopération Scientifique (PICS) “Longterm observations of aerosol properties in Southern Africa” (contract no. 260888), and the Partenariats Hubert Curien (PHC) PROTEA of the French Minister of Foreign Affairs and International Development (contract nos. 33913SF and 38255ZE)Ingeniería Química, Química Física y Ciencias de los MaterialesCIQS
South African EUCAARI measurements: seasonal variation of trace gases and aerosol optical properties
In this paper we introduce new in situ observations of atmospheric aerosols, especially chemical composition,
physical and optical properties, on the eastern brink of the heavily polluted Highveld area in South Africa. During
the observation period between 11 February 2009 and 31 January 2011, the mean particle number concentration (size
range 10–840 nm) was 6310 cm−3 and the estimated volume of sub-10 μm particles 9.3 μm3 m−3. The aerosol absorption and scattering coefficients at 637 nm were 8.3Mm−1 and 49.5Mm−1, respectively. The mean single-scattering albedo at 637 nm was 0.84 and the A° ngstro¨m exponent of scattering was 1.5 over the wavelength range 450–635 nm. The mean O3, SO2, NOx and H2S-concentrations were 37.1, 11.5, 15.1 and 3.2 ppb, respectively. The observed range of concentrations was large and attributed to the seasonal variation of sources and regional meteorological effects, especially the anticyclonic re-circulation and strong winter-time inversions. In a global context, the levels of gases and particulates were typical for continental sites with strong anthropogenic influence, but clearly lower than the most polluted areas of southeastern Asia. Of all pollutants observed at the site, ozone is the most likely to have adverse environmental effects, as the concentrations were high also during the growing season. The measurements presented here will help to close existing gaps in the ground-based global atmosphere observation system, since very little long-term data of this nature is available for southern Africa.JRC.H.7-Climate Risk Managemen
Atmospheric dry and wet deposition of sulphur and nitrogen species and assessment of critical loads of acidic deposition exceedance in South Africa
We tested the hypothesis that acidic atmospheric pollution deposition, originating from the South African central industrial area, poses an environmental threat across a larger region within the dispersal footprint. A network of 37 passive monitoring sites to measure SO2 and NO2 was operated from August 2005 to September 2007. The area extended over the entire northern and eastern interior of South Africa. Monitoring locations were chosen to avoid direct impacts from local sources such as towns, mines and highways. Dry deposition rates of SO2 and NO2 were calculated from the measured concentrations. Concentrations of sulphur and nitrogen species in wet deposition from a previous study were used in conjunction with measured rainfall for the years 2006 and 2007 to estimate the wet deposition over the region. The calculated total (non-organic) acidic deposition formed the basis for an assessment of exceedance of critical loads based on sensitivity of the regional soils. Regional soil sensitivity was determined by combining two major soil attributes available in the World Inventory of Soil Emission Potentials (International Soil Reference and Information Centre). Results indicate that certain parts of the central pollution source area on the South African Highveld have the potential for critical load exceedance, while limited areas downwind show lower levels of exceedance. Areas upwind and remote areas up and downwind, including forested areas of the Drakensberg escarpment, do not show any exceedance of the critical loads
Quantification of Emissions Generated from Domestic Burning Activities from Townships in Johannesburg
Domestic burning activities, specifically in informal settlements, contribute greatly to the air quality problems experienced by most developing urban centres. Low-income households that exist within townships in South Africa house a large portion of the South African population. These households burn vast quantities of coal, wood and other substances to provide for their energy needs. Pollutants emitted as a result of domestic burning are estimated to be one of the leading causes of respiratory illnesses in inhabitants of townships. To better understand the relationship that exists between domestic burning and the resultant pollutants, a method of quantifying these pollutants has been developed for a completely un-electrified settlement, near Johannesburg, using the quantities and type of fuel consumed. Seasonality, availability, price and cultural aspects all have a bearing on the fuel source choice and the quantity consumed. The most significant temporal observations identified for domestic burning are seasonal ones
Correcting respirable photometric particulate measurements using a gravimetric sampling method
According to the National Environmental Management: Air Quality Act of 2004 people have the right to clean air and a healthy environment. Particulate matter (PM) emissions pose a significant health threat. Both indoor and ambient air pollution contribute to the burden of disease associated with poor air quality. This is particularly true within the South African setting where low income households make use of different solid fuels for heating and cooking purposes resulting in high levels of PM emissions. This paper focuses on the evaluation mass concentration measurements recorded by continuous photometric PM instruments within KwaDela, a low income settlement in Mpumalanga located on the South African Highveld. Thus, obtaining a photometric calibration factor for both the DustTrak Model 8530 and the SidePak AM510. Sampling took place during August 2014 for a period of seven days. The photometric and gravimetric instruments were collocated within the indoor environment of selected households. These instruments were all fitted with 10mm Dorr-Oliver Cyclone inlets to obtain the respirable (PM4) cut-point. The study found that both instruments tend to overestimate the indoor particulate mass concentrations when compared to the reference gravimetric method. The estimated photometric calibration factors for the DustTrak Model 8530 and SidePak AM510 are 0.14 (95%Cl: 0.09, 0.15) and 0.24 (95%Cl: 0.16, 0.30) respectively. The overestimation of the photometric measurements is rather significant. It is therefore important that the correction factors are applied to data collected in indoor environments prone to the combustion of solid fuels. The correction factors obtained from this and other studies vary as a result of the environment (ambient, indoor etc.) as well as the aerosol size fraction and the origin thereof. Thus, it is important to considered site specific calibration factors when implementing these photometric light-scattering instruments
Idiopathic focal eosinophilic enteritis associated with ileocaecal and ileal obstruction in a 10-year-old warmblood gelding
A 10-year-old, 600-kg, warmblood gelding was referred due to persistent colic, non-responsive to medical treatment. Diagnostic evaluation revealed abdominal distention, tachycardia and distended small intestines. Preoperative blood testing revealed an increased packed cell volume and normal total white cell count, whereas an abdominocentesis revealed raised peritoneal fluid lactate. Exploratory laparotomy was performed and revealed a circumferential band of thickened tissue and hyperaemia in the distal jejunum, as well as marked wall thickening of the distal ileum and ileocaecal valve, leading to complete luminal obstruction. Due to financial constraints and complications associated with jejuno-caecostomy, the owner requested the horse to be humanely euthanased. Postmortem examination findings revealed a circumferential constriction of the distal ileum and ileocaecal valve. Histopathology of the affected segments was characterised by a large population of eosinophils within the mucosa, submucosa and muscularis layers in conjunction with severe submucosal oedema. A diagnosis of idiopathic focal eosinophilic enteritis was made.https://wileyonlinelibrary.com/journal/vrc2hj2023Companion Animal Clinical StudiesParaclinical Science
An assessment of the atmospheric nitrogen budget on the South African Highveld
Atmospheric reactive nitrogen concentrations on the South African Highveld have become a growing concern, with satellite images indicating very high nitrogen dioxide (NO2) concentrations in the region. This study investigated the nitrogen budget on the Highveld through the analysis of the concentration of the atmospheric nitrogen species on a temporal scale as well as the atmospheric conversion, transport and removal of these species. Data were collected at Eskom's Elandsfontein ambient air quality monitoring site, which is centrally located on the industrialised Highveld. A year's dataset from 2005 and 2006 was analysed and it was found that nitrogen oxide (NOx) concentrations were higher in winter as a result of stable atmospheric conditions, as well as prevalent westerly and north-westerly airflow, which transported emissions directly from the nearby power station sources to the monitoring site. Nitrate (NO3) concentrations also peaked during winter, with a distinct biomass burning peak during August 2005. Diurnally, NOx concentrations indicated a tall-stack industrial source, where concentrations peaked at midday. The NO3 concentrations were higher at night than during the day; during the day the NO3 radical is rapidly photolysed and nitrates cannot be produced. Case studies indicated that the conversion rate of nitric oxide (NO) to NO2 was highly variable as a result of varying atmospheric factors, which include time of day, dispersion, stability and regional atmospheric chemistry. These rates ranged from 11% to 59% per hour. Rates of dry deposition of NO, NO2 and NO3 were generally higher during winter as a result of higher atmospheric concentrations and increased atmospheric stability. Nitrogen was predominantly deposited as NO2 throughout the year, except during spring when NO3 deposition dominated. The total annual amount of nitrogen that was deposited to the Mpumalanga Highveld region was in the range of 6.7 kg/ha - 13.1 kg/ha per year, which is well below the stipulated critical load value. Such deposition, therefore, should not pose significant threats to the natural environment on the Highveld. Between 4% and 15% of the total emitted nitrogen from power generation on the Highveld was deposited to the surface via wet and dry deposition. The remainder was advected out of the region
- …
