248 research outputs found

    Extremely low-frequency spectroscopy in low-field nuclear magnetic resonance

    No full text
    We demonstrate a new phenomenon in nuclear magnetic resonance spectroscopy, in which nuclear spin transitions are induced by radio frequency irradiation at extremely low frequencies (of the order of a few Hz). Slow Rabi oscillations are observed between spin states of different exchange symmetry. These “forbidden” transitions are rendered weakly allowed by differential electronic shielding effects on the radio frequency field. We generate coherence between the singlet and triplet states of 15N-labeled nitrous oxide in solution, and estimate the scalar coupling between the two 15N nuclei with a precision of a few mHz

    Long-lived States in an intrinsically disordered protein domain

    Get PDF
    Long-lived states (LLS) are relaxation-favoured eigenstates of J-coupled magnetic nuclei. LLS were measured, along with classical 1H and 15 N relaxation rate constants, in aminoacids of the N-terminal Unique domain of the c-Src kinase (USrc), which is disordered in vitro under physiological conditions. The relaxation rates of LLS are a probe for motions and interactions in biomolecules. LLS of the aliphatic protons of glycines, with lifetimes ca. four times longer than their spin-lattice relaxation times, are reported for the first time in an intrinsically disordered protein domain (IDP). LLS relaxation experiments were integrated with 2D spectroscopy methods, further adapting them for studies on proteins

    Direct enhancement of nuclear singlet order by dynamic nuclear polarization

    No full text
    Hyperpolarized singlet order is available immediately after dissolution DNP, avoiding need for additional preparation steps. We demonstrate this procedure on a sample of [1,2–13C2]pyruvic aci

    Correction: Substituent interference on supramolecular assembly in urea gelators: synthesis, structure prediction and NMR

    Get PDF
    Correction for ‘Substituent interference on supramolecular assembly in urea gelators: synthesis, structure prediction and NMR’ by Francesca Piana et al., Soft Matter, 2016, 12, 4034–4043

    Substituent interference on supramolecular assembly in urea gelators: synthesis, structure prediction and NMR

    No full text
    Eighteen N-aryl-N?-alkyl urea gelators were synthesised in order to understand the effect of head substituents on gelation performance. Minimum gelation concentration values obtained from gel formation studies were used to rank the compounds and revealed the remarkable performance of 4-methoxyphenyl urea gelator 15 in comparison to 4-nitrophenyl analogue 14, which could not be simply ascribed to substituent effects on the hydrogen bonding capabilities of the urea protons. Crystal structure prediction calculations indicated alternative low energy hydrogen bonding arrangements between the nitro group and urea protons in gelator 14, which were supported experimentally by NMR spectroscopy. As a consequence, it was possible to relate the observed differences to interference of the head substituents with the urea tape motif, disrupting the order of supramolecular packing. The combination of unbiased structure prediction calculations with NMR is proposed as a powerful approach to investigate the supramolecular arrangement in gel fibres and help understand the relationships between molecular structure and gel formation

    Coherent evolution of parahydrogen induced polarisation using laser pump, NMR probe spectroscopy : Theoretical framework and experimental observation

    Get PDF
    We recently reported a pump-probe method that uses a single laser pulse to introduce parahydrogen (p-H2) into a metal dihydride complex and then follows the time-evolution of the p-H2-derived nuclear spin states by NMR. We present here a theoretical framework to describe the oscillatory behaviour of the resultant hyperpolarised NMR signals using a product operator formalism. We consider the cases where the p-H2-derived protons form part of an AX, AXY, AXYZ or AA′XX′ spin system in the product molecule. We use this framework to predict the patterns for 2D pump-probe NMR spectra, where the indirect dimension represents the evolution during the pump-probe delay and the positions of the cross-peaks depend on the difference in chemical shift of the p-H2-derived protons and the difference in their couplings to other nuclei. The evolution of the NMR signals of the p-H2-derived protons, as well as the transfer of hyperpolarisation to other NMR-active nuclei in the product, is described. The theoretical framework is tested experimentally for a set of ruthenium dihydride complexes representing the different spin systems. Theoretical predictions and experimental results agree to within experimental error for all features of the hyperpolarised 1H and 31P pump-probe NMR spectra. Thus we establish the laser pump, NMR probe approach as a robust way to directly observe and quantitatively analyse the coherent evolution of p-H2-derived spin order over micro-to-millisecond timescales

    Substituent interference on supramolecular assembly in urea gelators: synthesis, structure prediction and NMR

    Get PDF
    Eighteen N-aryl-N'-alkyl urea gelators were synthesised in order to understand the effect of head substituents on gelation performance. Minimum gelation concentration values obtained from gel formation studies were used to rank the compounds and revealed the remarkable performance of 4-methoxyphenyl urea gelator 15 in comparison to 4-nitrophenyl analogue 14, which could not be simply ascribed to substituent effects on the hydrogen bonding capabilities of the urea protons. Crystal structure prediction calculations indicated alternative low energy hydrogen bonding arrangements between the nitro group and urea protons in gelator 14, which were supported experimentally by NMR spectroscopy. As a consequence, it was possible to relate the observed differences to interference of the head substituents with the urea tape motif, disrupting the order of supramolecular packing. The combination of unbiased structure prediction calculations with NMR is proposed as a powerful approach to investigate the supramolecular arrangement in gel fibres and help understand the relationships between molecular structure and gel formation

    Improving the hyperpolarization of (31)p nuclei by synthetic design

    Get PDF
    Traditional (31)P NMR or MRI measurements suffer from low sensitivity relative to (1)H detection and consequently require longer scan times. We show here that hyperpolarization of (31)P nuclei through reversible interactions with parahydrogen can deliver substantial signal enhancements in a range of regioisomeric phosphonate esters containing a heteroaromatic motif which were synthesized in order to identify the optimum molecular scaffold for polarization transfer. A 3588-fold (31)P signal enhancement (2.34% polarization) was returned for a partially deuterated pyridyl substituted phosphonate ester. This hyperpolarization level is sufficient to allow single scan (31)P MR images of a phantom to be recorded at a 9.4 T observation field in seconds that have signal-to-noise ratios of up to 94.4 when the analyte concentration is 10 mM. In contrast, a 12 h 2048 scan measurement under standard conditions yields a signal-to-noise ratio of just 11.4. (31)P-hyperpolarized images are also reported from a 7 T preclinical scanner

    The long-lived nuclear singlet state of 15N-nitrous oxide in solution

    No full text
    A 15N nuclear singlet lifetime of over 26 min has been observed in a solution of 15N2O, by using a field-cycling NMR pulse sequence. This observation suggests applications of hyperpolarized 15N2O in medical imaging and for flow and diffusion studies
    corecore