3,957 research outputs found
Intelligent Product Brokering for E-Commerce: An Incremental Approach to Unaccounted Attribute Detection
This research concentrates on designing generic product-brokering agent to understand user preference towards a product category and recommends a list of products to the user according to the preference captured by the agent. The proposed solution is able to detect both quantifiable and non-quantifiable attributes through a user feedback system. Unlike previous approaches, this research allows the detection of unaccounted attributes that are not within the ontology of the system. No tedious change of the algorithm, database, or ontology is required when a new product attribute is introduced. This approach only requires the attribute to be within the description field of the product. The system analyzes the general product descriptions field and creates a list of candidate attributes affecting the user’s preference. A genetic algorithm verifies these candidate attributes and excess attributes are identified and filtered off. A prototype has been created and our results show positive results in the detection of unaccounted attributes affecting a user
Fatty acid composition of five Malaysian biscuits (cream crackers) with special reference to trans-fatty acids
The fatty acid composition and trans fatty acids (TFA) contents of samples of five Malaysian cream crackers biscuit brands were determined by gas-liquid chromatography, using a 60 m Supelco SP2340 fused silica capillary column and flame ionization detection. The identities of the fatty acids were established by comparing their retention times with authentic standards from Supelco. The results were expressed as relative percentages. The total saturated fatty acids (SFA) in the samples ranged from 48.90% to 54.87% of total fatty acids. As for the polyunsaturated fatty acids (PUFA), the total PUFA in the samples ranged from 9.97% to 11.73% of total fatty acids. Total trans fatty acids (TFA) ranged from 0.17% to 0.77% of total fatty acids. The monotrans 18:2 tc or 18:2 ct isomer content ranged from 0.07% to 0.10% of total fatty acids and the ditrans 18:2 isomer (9t, 12t) was not detected. The results indicate that all the fat sources of the 5 sample crackers biscuit brands were palm oil based
Separate density and viscosity measurements of unknown liquid using quartz crystal microbalance
Aqueous liquids have a wide range of applications in many fields. Basic physical properties like the density and the viscosity have great impacts on the functionalities of a given ionic liquid. For the millions kinds of existing liquids, only a few have been systematically measured with the density and the viscosity using traditional methods. However, these methods are limited to measure the density and the viscosity of an ionic liquid simultaneously especially in processing micro sample volumes. To meet this challenge, we present a new theoretical model and a novel method to separate density and viscosity measurements with single quartz crystal microbalance (QCM) in this work. The agreement of experimental results and theocratical calculations shows that the QCM is capable to measure the density and the viscosity of ionic liquid
Enhancement of polar phases in PVDF by forming PVDF/SiC nanowire composite
Different contents of silicon carbide (SiC) nanowires were mixed with Poly(vinylidene fluoride) (PVDF) to facilitate the polar phase crystallization. It was shown that the annealing temperature and SiC content affected on the phase and crystalline structures of PVDF/SiC samples. Furthermore, the addition of SiC nanowire enhanced the transformation of non-polar α phase to polar phases and increased the relative fraction of β phase in PVDF. Due to the nucleating agent mechanism of SiC nanowires, the ion-dipole interaction between the negatively charged surface of SiC nanowires and the positive CH2 groups in PVDF facilitated the formation of polar phases in PVDF
Recommended from our members
Revealing Nanoscale Solid-Solid Interfacial Phenomena for Long-Life and High-Energy All-Solid-State Batteries.
Enabling long cyclability of high-voltage oxide cathodes is a persistent challenge for all-solid-state batteries, largely because of their poor interfacial stabilities against sulfide solid electrolytes. While protective oxide coating layers such as LiNbO3 (LNO) have been proposed, its precise working mechanisms are still not fully understood. Existing literature attributes reductions in interfacial impedance growth to the coating's ability to prevent interfacial reactions. However, its true nature is more complex, with cathode interfacial reactions and electrolyte electrochemical decomposition occurring simultaneously, making it difficult to decouple each effect. Herein, we utilized various advanced characterization tools and first-principles calculations to probe the interfacial phenomenon between solid electrolyte Li6PS5Cl (LPSCl) and high-voltage cathode LiNi0.85Co0.1Al0.05O2 (NCA). We segregated the effects of spontaneous reaction between LPSCl and NCA at the interface and quantified the intrinsic electrochemical decomposition of LPSCl during cell cycling. Both experimental and computational results demonstrated improved thermodynamic stability between NCA and LPSCl after incorporation of the LNO coating. Additionally, we revealed the in situ passivation effect of LPSCl electrochemical decomposition. When combined, both these phenomena occurring at the first charge cycle result in a stabilized interface, enabling long cyclability of all-solid-state batteries
Calcium oscillations coordinate feather mesenchymal cell movement by SHH dependent modulation of gap junction networks
Collective cell migration mediates multiple tissue morphogenesis processes. Yet how multi-dimensional mesenchymal cell movements are coordinated remains mostly unknown. Here we report that coordinated mesenchymal cell migration during chicken feather elongation is accompanied by dynamic changes of bioelectric currents. Transcriptome profiling and functional assays implicate contributions from functional voltage-gated Ca^(2+) channels (VGCCs), Connexin-43 based gap junctions, and Ca^(2+) release activated Ca^(2+) (CRAC) channels. 4-Dimensional Ca^(2+) imaging reveals that the Sonic hedgehog-responsive mesenchymal cells display synchronized Ca^(2+) oscillations, which expand progressively in area during feather elongation. Inhibiting VGCCs, gap junctions, or Sonic hedgehog signaling alters the mesenchymal Ca^(2+) landscape, cell movement patterns and feather bud elongation. Ca^(2+) oscillations induced by cyclic activation of opto-cCRAC channels enhance feather bud elongation. Functional disruption experiments and promoter analysis implicate synergistic Hedgehog and WNT/β-Catenin signaling in activating Connexin-43 expression, establishing gap junction networks synchronizing the Ca^(2+) profile among cells, thereby coordinating cell movement patterns
A Neural Network for Detailed Human Depth Estimation from a Single Image
This paper presents a neural network to estimate a detailed depth map of the
foreground human in a single RGB image. The result captures geometry details
such as cloth wrinkles, which are important in visualization applications. To
achieve this goal, we separate the depth map into a smooth base shape and a
residual detail shape and design a network with two branches to regress them
respectively. We design a training strategy to ensure both base and detail
shapes can be faithfully learned by the corresponding network branches.
Furthermore, we introduce a novel network layer to fuse a rough depth map and
surface normals to further improve the final result. Quantitative comparison
with fused `ground truth' captured by real depth cameras and qualitative
examples on unconstrained Internet images demonstrate the strength of the
proposed method. The code is available at
https://github.com/sfu-gruvi-3dv/deep_human
- …
