13,473 research outputs found
Recommended from our members
Bond-Order Time Series Analysis for Detecting Reaction Events in Ab Initio Molecular Dynamics Simulations.
Ab initio molecular dynamics is able to predict novel reaction mechanisms by directly observing the individual reaction events that occur in simulation trajectories. In this article, we describe an approach for detecting reaction events from simulation trajectories using a physically motivated model based on time series analysis of ab initio bond orders. We found that applying a threshold to the bond order was insufficient for accurate detection, whereas peak finding on the first time derivative resulted in significantly improved accuracy. The model is trained on a reference set of reaction events representing the ideal result given unlimited computing resources. Our study includes two model systems: a heptanylium carbocation that undergoes hydride shifts and an unsaturated iron carbonyl cluster that features CO ligand migration and bridging behavior. The results indicate a high level of promise for this analysis approach to be used in mechanistic analysis of reactive AIMD simulations more generally
Existence of solutions for a class of fourth-order m-point boundary value problems
Some existence criteria are established for a class of fourth-order -point boundary value problem by using the upper and lower solution method and the Leray-Schauder continuation principle
Quantum chemical studies of redox properties and conformational changes of a four-center iron CO2 reduction electrocatalyst.
The CO2 reduction electrocatalyst [Fe4N(CO)12]- (abbrev. 1-) reduces CO2 to HCO2- in a two-electron, one-proton catalytic cycle. Here, we employ ab initio calculations to estimate the first two redox potentials of 1- and explore the pathway of a side reaction involving CO dissociation from 13-. Using the BP86 density functional approximation, the redox potentials were computed with a root mean squared error of 0.15 V with respect to experimental data. High temperature Born-Oppenheimer molecular dynamics was employed to discover a reaction pathway of CO dissociation from 13- with a reaction energy of +10.6 kcal mol-1 and an activation energy of 18.8 kcal mol-1; including harmonic free energy terms, this yields ΔGsep = 1.4 kcal mol-1 for fully separated species and ΔG‡ = +17.4 kcal mol-1, indicating CO dissociation is energetically accessible at ambient conditions. The analogous dissociation pathway from 12- has a reaction energy of 22.1 kcal mol-1 and an activation energy of 22.4 kcal mol-1 (ΔGsep = 12.8 kcal mol-1, ΔG‡ = +18.1 kcal mol-1). Our computed harmonic vibrational analysis of [Fe4N(CO)11]3- or 23- reveals a distinct CO-stretching peak red-shifted from the main CO-stretching band, pointing to a possible vibrational signature of dissociation. Multi-reference CASSCF calculations are used to check the assumptions of the density functional approximations that were used to obtain the majority of the results
Manipulating dc currents with bilayer bulk natural materials
The principle of transformation optics has been applied to various wave
phenomena (e.g., optics, electromagnetics, acoustics and thermodynamics).
Recently, metamaterial devices manipulating dc currents have received
increasing attention which usually adopted the analogue of transformation
optics using complicated resistor networks to mimic the inhomogeneous and
anisotropic conductivities. We propose a distinct and general principle of
manipulating dc currents by directly solving electric conduction equations,
which only needs to utilize two layers of bulk natural materials. We
experimentally demonstrate dc bilayer cloak and fan-shaped concentrator,
derived from the generalized account for cloaking sensor. The proposed schemes
have been validated as exact devices and this opens a facile way towards
complete spatial control of dc currents. The proposed schemes may have vast
potentials in various applications not only in dc, but also in other fields of
manipulating magnetic field, thermal heat, elastic mechanics, and matter waves
Self-organization and phase transition in financial markets with multiple choices
Market confidence is essential for successful investing. By incorporating
multi-market into the evolutionary minority game, we investigate the effects of
investor beliefs on the evolution of collective behaviors and asset prices.
When there exists another investment opportunity, market confidence, including
overconfidence and under-confidence, is not always good or bad for investment.
The roles of market confidence is closely related to market impact. For low
market impact, overconfidence in a particular asset makes an investor become
insensitive to losses and a delayed strategy adjustment leads to a decline in
wealth, and thereafter, one's runaway from the market. For high market impact,
under-confidence in a particular asset makes an investor over-sensitive to
losses and one's too frequent strategy adjustment leads to a large fluctuation
in asset prices, and thereafter, a decrease in the number of agents. At an
intermediate market impact, the phase transition occurs. No matter what the
market impact is, an equilibrium between different markets exists, which is
reflected in the occurrence of similar price fluctuations in different markets.
A theoretical analysis indicates that such an equilibrium results from the
coupled effects of strategy updating and shift in investment. The runaway of
the agents trading a specific asset will lead to a decline in the asset price
volatility and such a decline will be inhibited by the clustering of the
strategies. A uniform strategy distribution will lead to a large fluctuation in
asset prices and such a fluctuation will be suppressed by the decrease in the
number of agents in the market. A functional relationship between the price
fluctuations and the numbers of agents is found
- …
