23,951 research outputs found

    GSLAM: Initialization-robust Monocular Visual SLAM via Global Structure-from-Motion

    Full text link
    Many monocular visual SLAM algorithms are derived from incremental structure-from-motion (SfM) methods. This work proposes a novel monocular SLAM method which integrates recent advances made in global SfM. In particular, we present two main contributions to visual SLAM. First, we solve the visual odometry problem by a novel rank-1 matrix factorization technique which is more robust to the errors in map initialization. Second, we adopt a recent global SfM method for the pose-graph optimization, which leads to a multi-stage linear formulation and enables L1 optimization for better robustness to false loops. The combination of these two approaches generates more robust reconstruction and is significantly faster (4X) than recent state-of-the-art SLAM systems. We also present a new dataset recorded with ground truth camera motion in a Vicon motion capture room, and compare our method to prior systems on it and established benchmark datasets.Comment: 3DV 2017 Project Page: https://frobelbest.github.io/gsla

    Deep Learning Face Attributes in the Wild

    Full text link
    Predicting face attributes in the wild is challenging due to complex face variations. We propose a novel deep learning framework for attribute prediction in the wild. It cascades two CNNs, LNet and ANet, which are fine-tuned jointly with attribute tags, but pre-trained differently. LNet is pre-trained by massive general object categories for face localization, while ANet is pre-trained by massive face identities for attribute prediction. This framework not only outperforms the state-of-the-art with a large margin, but also reveals valuable facts on learning face representation. (1) It shows how the performances of face localization (LNet) and attribute prediction (ANet) can be improved by different pre-training strategies. (2) It reveals that although the filters of LNet are fine-tuned only with image-level attribute tags, their response maps over entire images have strong indication of face locations. This fact enables training LNet for face localization with only image-level annotations, but without face bounding boxes or landmarks, which are required by all attribute recognition works. (3) It also demonstrates that the high-level hidden neurons of ANet automatically discover semantic concepts after pre-training with massive face identities, and such concepts are significantly enriched after fine-tuning with attribute tags. Each attribute can be well explained with a sparse linear combination of these concepts.Comment: To appear in International Conference on Computer Vision (ICCV) 201

    Linear Global Translation Estimation with Feature Tracks

    Full text link
    This paper derives a novel linear position constraint for cameras seeing a common scene point, which leads to a direct linear method for global camera translation estimation. Unlike previous solutions, this method deals with collinear camera motion and weak image association at the same time. The final linear formulation does not involve the coordinates of scene points, which makes it efficient even for large scale data. We solve the linear equation based on L1L_1 norm, which makes our system more robust to outliers in essential matrices and feature correspondences. We experiment this method on both sequentially captured images and unordered Internet images. The experiments demonstrate its strength in robustness, accuracy, and efficiency.Comment: Changes: 1. Adopt BMVC2015 style; 2. Combine sections 3 and 5; 3. Move "Evaluation on synthetic data" out to supplementary file; 4. Divide subsection "Evaluation on general data" to subsections "Experiment on sequential data" and "Experiment on unordered Internet data"; 5. Change Fig. 1 and Fig.8; 6. Move Fig. 6 and Fig. 7 to supplementary file; 7 Change some symbols; 8. Correct some typo
    corecore