5,261 research outputs found
Comparative global immune-related gene profiling of somatic cells, human pluripotent stem cells and their derivatives: implication for human lymphocyte proliferation.
Human pluripotent stem cells (hPSCs), including embryonic stem cells (ESCs) and induced PSCs (iPSCs), represent potentially unlimited cell sources for clinical applications. Previous studies have suggested that hPSCs may benefit from immune privilege and limited immunogenicity, as reflected by the reduced expression of major histocompatibility complex class-related molecules. Here we investigated the global immune-related gene expression profiles of human ESCs, hiPSCs and somatic cells and identified candidate immune-related genes that may alter their immunogenicity. The expression levels of global immune-related genes were determined by comparing undifferentiated and differentiated stem cells and three types of human somatic cells: dermal papilla cells, ovarian granulosa cells and foreskin fibroblast cells. We identified the differentially expressed genes CD24, GATA3, PROM1, THBS2, LY96, IFIT3, CXCR4, IL1R1, FGFR3, IDO1 and KDR, which overlapped with selected immune-related gene lists. In further analyses, mammalian target of rapamycin complex (mTOR) signaling was investigated in the differentiated stem cells following treatment with rapamycin and lentiviral transduction with specific short-hairpin RNAs. We found that the inhibition of mTOR signal pathways significantly downregulated the immunogenicity of differentiated stem cells. We also tested the immune responses induced in differentiated stem cells by mixed lymphocyte reactions. We found that CD24- and GATA3-deficient differentiated stem cells including neural lineage cells had limited abilities to activate human lymphocytes. By analyzing the transcriptome signature of immune-related genes, we observed a tendency of the hPSCs to differentiate toward an immune cell phenotype. Taken together, these data identify candidate immune-related genes that might constitute valuable targets for clinical applications
Polythiophenes comprising conjugated pendantstoward long-term air-stable inverted polymer solar cellswith high open circuit voltages
A series of polythiophenes (PTs) functionalized with bulky conjugated side chains comprising tert-butylsubstituted carbazole (tCz) as an electron donor pendant and bisbenzothiazolylvinyl (DBT) as anelectron acceptor pendant were synthesized via Stille copolymerization for polymer solar cell (PSC)applications. We use the descriptors PTtCz, PT(tCz)0.9(DBT)0.1, PT(tCz)0.64(DBT)0.36, PT(tCz)0.45(DBT)0.55,and PTDBT to identify each of these conjugated polymers, with the names denoting the compositionsof the bulky pendants. The tunable energy levels of the PTs were accomplished by incorporating bothtCz as a donor pendant and DBT as an acceptor pendant, while retaining the low-lying HOMO levels( 5.26 to 5.39 eV). Furthermore, lower bandgaps were observed for the DBT-derived PTs because ofstronger donor–p–acceptor characteristics and more efficient intramolecular charge transfer.Conventional PSCs were fabricated by spin-coating the blend of each PT and the fullerene derivative(PC71BM). The conventional PSC devices exhibited high open circuit voltages (Voc) of around 0.79–0.91 V. The power conversion efficiency (PCE) of the PSCs based on PTtCz : PC71BM (w/w ¼ 1 : 2.5)reached 2.48% with a Voc of 0.91 V, short circuit current (Jsc) of 6.58 (mA cm 2) and fill factor (FF) of41% under the illumination of AM1.5, 100 mW cm 2. Furthermore, a PTtCz/PC71BM-based inverted PSCwith ZnOx and MoO3 as an electron extraction layer and a hole extraction layer respectively was capableof retaining ca. 80% of its original efficiency after storage under ambient conditions (withoutencapsulation) for 1032 h, according to the ISOS-D-1 shelf protocol. The highly durable inverted PSCaccompanied by a large Voc value was achieved for the PT-type polymers
From insulator to quantum Hall liquid at low magnetic fields
We have performed low-temperature transport measurements on a GaAs
two-dimensional electron system at low magnetic fields. Multiple
temperature-independent points and accompanying oscillations are observed in
the longitudinal resistivity between the low-field insulator and the quantum
Hall (QH) liquid. Our results support the existence of an intermediate regime,
where the amplitudes of magneto-oscillations can be well described by
conventional Shubnikov-de Haas theory, between the low-field insulator and QH
liquid.Comment: Magneto-oscillations governed by Shubnikov-de Haas theory are
observed between the low-field insulator and quantum Hall liqui
Susceptibility of Human Embryonic Stem Cell-Derived Neural Cells to Japanese Encephalitis Virus Infection
Pluripotent human embryonic stem cells (hESCs) can be efficiently directed to become immature neuroepithelial precursor cells (NPCs) and functional mature neural cells, including neurotransmitter-secreting neurons and glial cells. Investigating the susceptibility of these hESCs-derived neural cells to neurotrophic viruses, such as Japanese encephalitis virus (JEV), provides insight into the viral cell tropism in the infected human brain. We demonstrate that hESC-derived NPCs are highly vulnerable to JEV infection at a low multiplicity of infection (MOI). In addition, glial fibrillary acid protein (GFAP)-expressing glial cells are also susceptible to JEV infection. In contrast, only a few mature neurons were infected at MOI 10 or higher on the third day post-infection. In addition, functional neurotransmitter-secreting neurons are also resistant to JEV infection at high MOI. Moreover, we discover that vimentin intermediate filament, reported as a putative neurovirulent JEV receptor, is highly expressed in NPCs and glial cells, but not mature neurons. These results indicate that the expression of vimentin in neural cells correlates to the cell tropism of JEV. Finally, we further demonstrate that membranous vimentin is necessary for the susceptibility of hESC-derived NPCs to JEV infection
Magnetic Fields and Massive Star Formation
Massive stars ( \msun) typically form in parsec-scale molecular clumps
that collapse and fragment, leading to the birth of a cluster of stellar
objects. We investigate the role of magnetic fields in this process through
dust polarization at 870 m obtained with the Submillimeter Array (SMA).
The SMA observations reveal polarization at scales of \lsim 0.1 pc. The
polarization pattern in these objects ranges from ordered hour-glass
configurations to more chaotic distributions. By comparing the SMA data with
the single dish data at parsec scales, we found that magnetic fields at dense
core scales are either aligned within of or perpendicular to the
parsec-scale magnetic fields. This finding indicates that magnetic fields play
an important role during the collapse and fragmentation of massive molecular
clumps and the formation of dense cores. We further compare magnetic fields in
dense cores with the major axis of molecular outflows. Despite a limited number
of outflows, we found that the outflow axis appears to be randomly oriented
with respect to the magnetic field in the core. This result suggests that at
the scale of accretion disks (\lsim 10^3 AU), angular momentum and dynamic
interactions possibly due to close binary or multiple systems dominate over
magnetic fields. With this unprecedentedly large sample massive clumps, we
argue on a statistical basis that magnetic fields play an important role during
the formation of dense cores at spatial scale of 0.01 - 0.1 pc in the context
of massive star and cluster star formation.Comment: Accepted for publication in Astrophysical Journa
Local Magnetic Field Role in Star Formation
We highlight distinct and systematic observational features of magnetic field
morphologies in polarized submm dust continuum. We illustrate this with
specific examples and show statistical trends from a sample of 50 star-forming
regions.Comment: 4 pages, 3 figures; to appear in the EAS Proceedings of the 6th
Zermatt ISM Symposium "Conditions and Impact of Star Formation from Lab to
Space", September 201
A simple derivation of level spacing of quasinormal frequencies for a black hole with a deficit solid angle and quintessence-like matter
In this paper, we investigate analytically the level space of the imaginary
part of quasinormal frequencies for a black hole with a deficit solid angle and
quintessence-like matter by the Padmanabhan's method \cite{Padmanabhan}.
Padmanabhan presented a method to study analytically the imaginary part of
quasinormal frequencies for a class of spherically symmetric spacetimes
including Schwarzschild-de Sitter black holes which has an evenly spaced
structure. The results show that the level space of scalar and gravitational
quasinormal frequencies for this kind of black holes only depend on the surface
gravity of black-hole horizon in the range of -1 < w < -1/3, respectively . We
also extend the range of to , the results of which are similar
to that in -1 < w < -1/3 case. Particularly, a black hole with a deficit solid
angle in accelerating universe will be a Schwarzschild-de Sitter black hole,
fixing and . And a black hole with a deficit solid
angle in the accelerating universe will be a Schwarzschild black hole,when
and . In this paper, is the parameter of state
equation, is a parameter relating to a deficit solid angle and
is the density of static spherically symmetrical quintessence-like
matter at .Comment: 6 pages, Accepted for publication in Astrophysics & Space Scienc
- …
