2,824 research outputs found
Time scales of epidemic spread and risk perception on adaptive networks
Incorporating dynamic contact networks and delayed awareness into a contagion
model with memory, we study the spreading patterns of infectious diseases in
connected populations. It is found that the spread of an infectious disease is
not only related to the past exposures of an individual to the infected but
also to the time scales of risk perception reflected in the social network
adaptation. The epidemic threshold is found to decrease with the rise
of the time scale parameter s and the memory length T, they satisfy the
equation .
Both the lifetime of the epidemic and the topological property of the evolved
network are considered. The standard deviation of the degree
distribution increases with the rise of the absorbing time , a power-law
relation is found
Recommended from our members
TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution
The Taishan Antineutrino Observatory (TAO, also known as JUNO-TAO) is a
satellite experiment of the Jiangmen Underground Neutrino Observatory (JUNO). A
ton-level liquid scintillator detector will be placed at about 30 m from a core
of the Taishan Nuclear Power Plant. The reactor antineutrino spectrum will be
measured with sub-percent energy resolution, to provide a reference spectrum
for future reactor neutrino experiments, and to provide a benchmark measurement
to test nuclear databases. A spherical acrylic vessel containing 2.8 ton
gadolinium-doped liquid scintillator will be viewed by 10 m^2 Silicon
Photomultipliers (SiPMs) of >50% photon detection efficiency with almost full
coverage. The photoelectron yield is about 4500 per MeV, an order higher than
any existing large-scale liquid scintillator detectors. The detector operates
at -50 degree C to lower the dark noise of SiPMs to an acceptable level. The
detector will measure about 2000 reactor antineutrinos per day, and is designed
to be well shielded from cosmogenic backgrounds and ambient radioactivities to
have about 10% background-to-signal ratio. The experiment is expected to start
operation in 2022
Genetic and functional characterization of disease associations explains comorbidity
Understanding relationships between diseases, such as
comorbidities, has important socio-economic implications,
ranging from clinical study design to health care planning. Most
studies characterize disease comorbidity using shared genetic
origins, ignoring pathway-based commonalities between diseases.
In this study, we define the disease pathways using an
interactome-based extension of known disease-genes and introduce
several measures of functional overlap. The analysis reveals 206
significant links among 94 diseases, giving rise to a highly
clustered disease association network. We observe that around
95% of the links in the disease network, though not identified
by genetic overlap, are discovered by functional overlap. This
disease network portraits rheumatoid arthritis, asthma,
atherosclerosis, pulmonary diseases and Crohn's disease as hubs
and thus pointing to common inflammatory processes underlying
disease pathophysiology. We identify several described
associations such as the inverse comorbidity relationship
between Alzheimer's disease and neoplasms. Furthermore, we
investigate the disruptions in protein interactions by mapping
mutations onto the domains involved in the interaction,
suggesting hypotheses on the causal link between diseases.
Finally, we provide several proof-of-principle examples in which
we model the effect of the mutation and the change of the
association strength, which could explain the observed
comorbidity between diseases caused by the same genetic
alterations
- …
