175 research outputs found
Effect of Global Warming on the Secondary Factors Affecting Water Use Efficiency and Irrigation Management
Air Pollution over North-West Bay of Bengal in the Early Post-Monsoon Season Based on NASA MERRAero Data
The MERRA Aerosol Reanalysis (MERRAero) has been recently developed at NASA's Global Modeling Assimilation Office (GMAO). This reanalysis is based on a version of the GEOS-5 model radiatively coupled with GOCART aerosols, and it includes assimilation of bias-corrected Aerosol Optical Thickness (AOT) from the MODIS sensor on both Terra and Aqua satellites. Our main finding is that, in October, in the absence of aerosol sources in north-west Bay of Bengal (BoB), MERRAero showed increasing AOT trends over north-west BoB exceeding those over the east of the Ganges basin. The Ganges basin is characterized by significant population growth accompanied by developing industry, agriculture, and increasing transportation: this has resulted in declining air quality. MERRAero data for the period 2002-2009 was used to study AOT trends over north-west Bay of Bengal (BoB) in the early post-monsoon season. This season is characterized by aerosol transport from the Ganges basin to north-west BoB by prevailing winds; and still significant rainfall of over 150 mmmonth. Different aerosol components showed strong increasing AOT trends over north-west BoB. The following factors contributed to the increasing AOT trend over the area in question in October: an increasing number of days when prevailing winds blew from land to sea, resulting in a drier environment and an increase in air pollution over north-west BoB; wind convergence was observed over north-west BoB causing the accumulation of aerosol particles over that region, when prevailing winds blew from land to sea. MERRAero aerosol reanalysis can be used on a global scale
AOD Distributions and Trends of Major Aerosol Species over a Selection of the World's Most Populated Cities Based on the 1st Version of NASA's MERRA Aerosol Reanalysis
NASA recently extended the Modern-Era Retrospective Analysis for Research and Application (MERRA) with an atmospheric aerosol reanalysis which includes five particulate species: sulfate, organic matter, black carbon, mineral dust and sea salt. The MERRA Aerosol Reanalysis (MERRAero) is an innovative tool to study air quality issues around the world for its global and constant coverage and its distinction of aerosol speciation expressed in the form of aerosol optical depth (AOD). The purpose of this manuscript is to apply MERRAero to the study of urban air pollution at the global scale by analyzing the AOD over a period of 13 years (2003-2015) and over a selection of 200 of the world's most populated cities in order to assess the impacts of urbanization, industrialization, air quality regulations and regional transport which affect urban aerosol load. Environmental regulations and the recent global economic recession have helped to decrease the AOD and sulfate aerosols in most cities in North America, Europe and Japan. Rapid industrialization in China over the last two decades resulted in Chinese cities having the highest AOD values in the world. China has nevertheless recently implemented emission control measures which are showing early signs of success in many cities of Southern China where AOD has decreased substantially over the last 13 years. The AOD over South American cities, which is dominated by carbonaceous aerosols, has also decreased over the last decade due to an increase in commodity prices which slowed deforestation activities in the Amazon rainforest. At the opposite, recent urbanization and industrialization in India and Bangladesh resulted in a strong increase of AOD, sulfate and carbonaceous aerosols in most cities of these two countries. The AOD over most cities in Northern Africa and Western Asia changed little over the last decade. Emissions of natural aerosols, which cities in these two regions tend to be mostly composed of, don't tend to fluctuate significantly on an annual basis
The effects of climatic changes on the availability of water resources in Israel - Atmospheric section
Technical Report Series on Global Modeling and Data Assimilation
NASA's Global Modeling and Assimilation Office has extended the Modern-Era Retrospective Analysis for Research and Application (MERRA) tool with five atmospheric aerosol species (sulfates, organic carbon, black carbon, mineral dust and sea salt). This inclusion of aerosol reanalysis data is now known as MERRAero. This study analyses a ten-year period (July 2002 - June 2012) MERRAero aerosol reanalysis applied to the study of aerosol optical depth (AOD) and its trends for the aforementioned aerosol species over the world's major cities (with a population of over 2 million inhabitants). We found that a proportion of various aerosol species in total AOD exhibited a geographical dependence. Cities in industrialized regions (North America, Europe, central and eastern Asia) are characterized by a strong proportion of sulfate aerosols. Organic carbon aerosols are dominant over cities which are located in regions where biomass burning frequently occurs (South America and southern Africa). Mineral dust dominates other aerosol species in cities located in proximity to the major deserts (northern Africa and western Asia). Sea salt aerosols are prominent in coastal cities but are dominant aerosol species in very few of them. AOD trends are declining over cities in North America, Europe and Japan, as a result of effective air quality regulation. By contrast, the economic boom in China and India has led to increasing AOD trends over most cities in these two highly-populated countries. Increasing AOD trends over cities in the Middle East are caused by increasing desert dust
Challenges in Diurnal Humidity Analysis from Cellular Microwave Links (CML) over Germany
Near-surface humidity is a crucial variable in many atmospheric processes, mostly related to the development of clouds and rain. The humidity at the height of a few tens of meters above ground level is highly influenced by surface characteristics. Measuring the near-surface humidity at high resolution, where most of the humidity’s sinks and sources are found, is a challenging task using classical tools. A novel approach for measuring the humidity is based on commercial microwave links (CML), which provide a large part of the cellular networks backhaul. This study focuses on employing humidity measurements with high spatio–temporal resolution in Germany. One major goal is to assess the errors and the environmental influence by comparing the CML-derived humidity to in-situ humidity measurements at weather stations and reanalysis (COSMO-Rea6) products. The method of retrieving humidity from the CML has been improved as compared to previous studies due to the use of new data at high temporal resolution. The results show a similar correlation on average and generally good agreement between both the CML retrievals and the reanalysis, and 32 weather stations near Siegen, West Germany (CML—0.84, Rea6—0.85). Higher correlations are observed for CML-derived humidity during the daytime (0.85), especially between 9–17 LT (0.87) and a maximum at 12 LT (0.90). During the night, the correlations are lower on average (0.81), with a minimum at 3 LT (0.74). These results are discussed with attention to the diurnal boundary layer (BL) height variation which has a strong effect on the BL humidity temporal profile. Further metrics including root mean square errors, mean values and standard deviations, were also calculated
- …
