349 research outputs found

    Ipl1/aurora kinase suppresses S-CDK-driven spindle formation during prophase I to ensure chromosome integrity during meiosis

    Get PDF
    Cells coordinate spindle formation with DNA repair and morphological modifications to chromosomes prior to their segregation to prevent cell division with damaged chromosomes. Here we uncover a novel and unexpected role for Aurora kinase in preventing the formation of spindles by Clb5-CDK (S-CDK) during meiotic prophase I and when the DDR is active in budding yeast. This is critical since S-CDK is essential for replication during premeiotic S-phase as well as double-strand break induction that facilitates meiotic recombination and, ultimately, chromosome segregation. Furthermore, we find that depletion of Cdc5 polo kinase activity delays spindle formation in DDR-arrested cells and that ectopic expression of Cdc5 in prophase I enhances spindle formation, when Ipl1 is depleted. Our findings establish a new paradigm for Aurora kinase function in both negative and positive regulation of spindle dynamics

    Negative feedback at kinetochores underlies a responsive spindle checkpoint signal

    Get PDF
    Kinetochores are specialized multi-protein complexes that play a crucial role in maintaining genome stability. They bridge attachments between chromosomes and microtubules during mitosis and they activate the spindle assembly checkpoint (SAC) to arrest division until all chromosomes are attached. Kinetochores are able to efficiently integrate these two processes because they can rapidly respond to changes in microtubule occupancy by switching localized SAC signalling ON or OFF. We show that this responsiveness arises because the SAC primes kinetochore phosphatases to induce negative feedback and silence its own signal. Active SAC signalling recruits PP2A-B56 to kinetochores where it antagonizes Aurora B to promote PP1 recruitment. PP1 in turn silences the SAC and delocalizes PP2A-B56. Preventing or bypassing key regulatory steps demonstrates that this spatiotemporal control of phosphatase feedback underlies rapid signal switching at the kinetochore by: allowing the SAC to quickly transition to the ON state in the absence of antagonizing phosphatase activity; and ensuring phosphatases are then primed to rapidly switch the SAC signal OFF when kinetochore kinase activities are diminished by force-producing microtubule attachments.</p

    Studying kinetochore kinases

    Get PDF
    Mitotic kinetochores are signaling network hubs that regulate chromosome movements, attachment error-correction, and the spindle assembly checkpoint. Key switches in these networks are kinases and phosphatases that enable rapid responses to changing conditions. Describing the mechanisms and dynamics of their localized activation and deactivation is therefore instrumental for understanding the spatiotemporal control of chromosome segregation

    TRIP13 and APC15 drive mitotic exit by turnover of interphase- and unattached kinetochore-produced MCC

    Get PDF
    The mitotic checkpoint ensures accurate chromosome segregation through assembly of the mitotic checkpoint complex (MCC), a soluble inhibitor of the anaphase-promoting complex/cyclosome (APC/C) produced by unattached kinetochores. MCC is also assembled during interphase by Mad1/Mad2 bound at nuclear pores, thereby preventing premature mitotic exit prior to kinetochore maturation and checkpoint activation. Using degron tagging to rapidly deplete the AAA+ ATPase TRIP13, we show that its catalytic activity is required to maintain a pool of open-state Mad2 for MCC assembly, thereby supporting mitotic checkpoint activation, but is also required for timely mitotic exit through catalytic disassembly of MCC. Strikingly, combining TRIP13 depletion with elimination of APC15-dependent Cdc20 ubiquitination/degradation results in a complete inability to exit mitosis, even when MCC assembly at unattached kinetochores is prevented. Thus, mitotic exit requires MCC produced either in interphase or mitosis to be disassembled by TRIP13-catalyzed removal of Mad2 or APC15-driven ubiquitination/degradation of its Cdc20 subunit

    A Kinase-Phosphatase Network that Regulates Kinetochore-Microtubule Attachments and the SAC

    Get PDF
    The KMN network (for KNL1, MIS12 and NDC80 complexes) is a hub for signalling at the outer kinetochore. It integrates the activities of two kinases (MPS1 and Aurora B) and two phosphatases (PP1 and PP2A-B56) to regulate kinetochore-microtubule attachments and the spindle assembly checkpoint (SAC). We will first discuss each of these enzymes separately, to describe how they are regulated at kinetochores and why this is important for their primary function in controlling either microtubule attachments or the SAC. We will then discuss why inhibiting any one of them individually produces secondary effects on all the others. This cross-talk may help to explain why all enzymes have been linked to both processes, even though the direct evidence suggests they each control only one. This chapter therefore describes how a network of kinases and phosphatases work together to regulate two key mitotic processes.</p

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Trends in the Molecular Epidemiology and Genetic Mechanisms of Transmitted Human Immunodeficiency Virus Type 1 Drug Resistance in a Large US Clinic Population

    Get PDF
    © The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society of America. Background. There are few large studies of transmitted drug resistance (TDR) prevalence and the drug resistance mutations (DRMs) responsible for TDR in the United States. Methods. Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) and protease sequences were obtained from 4253 antiretroviral therapy (ART)-naive individuals in a California clinic population from 2003 to 2016. Phylogenetic analyses were performed to study linkages between TDR strains and selection pressure on TDR-associated DRMs. Results. From 2003 to 2016, there was a significant increase in overall (odds ratio [OR], 1.05 per year [95% confidence interval {CI}, 1.03-1.08]; P < .001) and nonnucleoside RT inhibitor (NNRTI)-associated TDR (OR, 1.11 per year [95% CI, 1.08-1.15]; P < .001). Between 2012 and 2016, TDR rates to any drug class ranged from 15.7% to 19.2%, and class-specific rates ranged from 10.0% to 12.8% for NNRTIs, 4.1% to 8.1% for nucleoside RT inhibitors (NRTIs), and 3.6% to 5.2% for protease inhibitors. The thymidine analogue mutations, M184V/I and the tenofovir-associated DRMs K65R and K70E/Q/G/N/T accounted for 82.9%, 7.3%, and 1.4% of NRTI-associated TDR, respectively. Thirty-seven percent of TDR strains clustered with other TDR strains sharing the same DRMs. Conclusions. Although TDR has increased significantly in this large cohort, many TDR strains are unlikely to influence the activity of currently preferred first-line ART regimens. The high proportion of DRMs associated with infrequently used regimens combined with the clustering of TDR strains suggest that some TDR strains are being transmitted between ART-naive individuals

    Loss of Function of the Cik1/Kar3 Motor Complex Results in Chromosomes with Syntelic Attachment That Are Sensed by the Tension Checkpoint

    Get PDF
    The attachment of sister kinetochores by microtubules emanating from opposite spindle poles establishes chromosome bipolar attachment, which generates tension on chromosomes and is essential for sister-chromatid segregation. Syntelic attachment occurs when both sister kinetochores are attached by microtubules from the same spindle pole and this attachment is unable to generate tension on chromosomes, but a reliable method to induce syntelic attachments is not available in budding yeast. The spindle checkpoint can sense the lack of tension on chromosomes as well as detached kinetochores to prevent anaphase onset. In budding yeast Saccharomyces cerevisiae, tension checkpoint proteins Aurora/Ipl1 kinase and centromere-localized Sgo1 are required to sense the absence of tension but are dispensable for the checkpoint response to detached kinetochores. We have found that the loss of function of a motor protein complex Cik1/Kar3 in budding yeast leads to syntelic attachments. Inactivation of either the spindle or tension checkpoint enables premature anaphase entry in cells with dysfunctional Cik1/Kar3, resulting in co-segregation of sister chromatids. Moreover, the abolished Kar3-kinetochore interaction in cik1 mutants suggests that the Cik1/Kar3 complex mediates chromosome movement along microtubules, which could facilitate bipolar attachment. Therefore, we can induce syntelic attachments in budding yeast by inactivating the Cik1/Kar3 complex, and this approach will be very useful to study the checkpoint response to syntelic attachments

    Identification of Mycobacterium tuberculosis clinical isolates in Bangladesh by a species distinguishable multiplex PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Species identification of isolates belonging to the <it>Mycobacterium tuberculosis </it>complex (MTC) seems to be important for the appropriate treatment of patients, since <it>M. bovis </it>is naturally resistant to a first line anti-tuberculosis (TB) drug, pyrazinamide, while most of the other MTC members are susceptible to this antimicrobial agent. A simple and low-cost differentiation method was needed in higher TB burden countries, such as Bangladesh, where the prevalence of <it>M. bovis </it>among people or cattle has not been investigated.</p> <p>Methods</p> <p>Genetic regions <it>cfp32</it>, RD9 and RD12 were chosen as targets for a species distinguishable multiplex PCR and the system was evaluated with twenty reference strains of mycobacterial species including non-tubercular mycobacteria (NTM). A total of 350 clinical MTC isolates obtained in Bangladesh were then analyzed with this multiplex PCR.</p> <p>Results</p> <p>All of the MTC reference strains gave expected banding patterns and no non-specific amplifications were observed in the NTM strains. Out of 350 clinical isolates examined by this method, 347 (99.1%) were positive for all of the <it>cfp32</it>, RD9 and RD12 and determined as <it>M. tuberculosis</it>. Two isolates lacked <it>cfp32 </it>PCR product and one lacked RD12, however, those three samples were further examined and identified as <it>M. tuberculosis </it>by the sequence analyses of <it>hsp65 </it>and <it>gyrB</it>.</p> <p>Conclusions</p> <p>The MTC-discrimination multiplex PCR (MTCD-MPCR) developed in this study showed high specificity and was thought to be very useful as a routine test because of its simplicity. In the current survey, all the 350 MTC isolates obtained from Bangladesh TB patients were determined as <it>M. tuberculosis </it>and no other MTC were detected. This result suggested the general TB treatment regimen including pyrazinamide to be the first choice in Bangladesh.</p
    corecore