27,270 research outputs found
Relativistic deuteron structure function at large Q^2
The deuteron deep inelastic unpolarized structure function F_2^D is
calculated using the Wilson operator product expansion method. The long
distance behaviour, related to the deuteron bound state properties, is
evaluated using the Bethe-Salpeter equation with one particle on mass shell.
The calculation of the ratio F_2^D/F_2^N is compared with other convolution
models showing important deviations in the region of large x. The implications
in the evaluation of the neutron structure function from combined data on
deuterons and protons are discussed.Comment: 7 pages, 1 ps figure, RevTeX source, 1 tar.gz file. Submited to
Physical Letter
Efeito de fertilizantes nitrogenados no comportamento de plantas de melão cultivadas em casa de vegetação.
Com o objetivo de avaliar o efeito de fontes de nitrogênio sobre a área foliar, a produção de matéria seca e o conteúdo de nitrogênio na parte aérea de plantas de melão (Cucumis melo L.) conduziu-se um ensaio em casa de vegetação, em Petrolina, PE, Brasil, com o híbrido Hy Mark
Schwinger's Method for the Massive Casimir Effect
We apply to the massive scalar field a method recently proposed by Schwinger
to calculate the Casimir effect. The method is applied with two different
regularization schemes: the Schwinger original one by means of Poisson formula
and another one by means of analytical continuation.Comment: plain TeX, 6 pages, DFTUZ-93-2
Extracellular cysteine in connexins: Role as redox sensors
Indexación: Scopus.Connexin-based channels comprise hemichannels and gap junction channels. The opening of hemichannels allow for the flux of ions and molecules from the extracellular space into the cell and vice versa. Similarly, the opening of gap junction channels permits the diffusional exchange of ions and molecules between the cytoplasm and contacting cells. The controlled opening of hemichannels has been associated with several physiological cellular processes; thereby unregulated hemichannel activity may induce loss of cellular homeostasis and cell death. Hemichannel activity can be regulated through several mechanisms, such as phosphorylation, divalent cations and changes in membrane potential. Additionally, it was recently postulated that redox molecules could modify hemichannels properties in vitro. However, the molecular mechanism by which redox molecules interact with hemichannels is poorly understood. In this work, we discuss the current knowledge on connexin redox regulation and we propose the hypothesis that extracellular cysteines could be important for sensing changes in redox potential. Future studies on this topic will offer new insight into hemichannel function, thereby expanding the understanding of the contribution of hemichannels to disease progression.http://journal.frontiersin.org/article/10.3389/fphys.2016.00001/ful
Measuring Baryon Acoustic Oscillations with Millions of Supernovae
Since type Ia Supernovae (SNe) explode in galaxies, they can, in principle,
be used as the same tracer of the large-scale structure as their hosts to
measure baryon acoustic oscillations (BAOs). To realize this, one must obtain a
dense integrated sampling of SNe over a large fraction of the sky, which may
only be achievable photometrically with future projects such as the Large
Synoptic Survey Telescope. The advantage of SN BAOs is that SNe have more
uniform luminosities and more accurate photometric redshifts than galaxies, but
the disadvantage is that they are transitory and hard to obtain in large number
at high redshift. We find that a half-sky photometric SN survey to redshift z =
0.8 is able to measure the baryon signature in the SN spatial power spectrum.
Although dark energy constraints from SN BAOs are weak, they can significantly
improve the results from SN luminosity distances of the same data, and the
combination of the two is no longer sensitive to cosmic microwave background
priors.Comment: 4 pages, 3 figures, ApJL accepte
The impact of the air-fluorescence yield on the reconstructed shower parameters of ultra-high energy cosmic rays
An accurate knowledge of the fluorescence yield and its dependence on
atmospheric properties such as pressure, temperature or humidity is essential
to obtain a reliable measurement of the primary energy of cosmic rays in
experiments using the fluorescence technique. In this work, several sets of
fluorescence yield data (i.e. absolute value and quenching parameters) are
described and compared. A simple procedure to study the effect of the assumed
fluorescence yield on the reconstructed shower parameters (energy and shower
maximum depth) as a function of the primary features has been developed. As an
application, the effect of water vapor and temperature dependence of the
collisional cross section on the fluorescence yield and its impact on the
reconstruction of primary energy and shower maximum depth has been studied.Comment: Accepted in Astroparticle Physic
Recording from two neurons: second order stimulus reconstruction from spike trains and population coding
We study the reconstruction of visual stimuli from spike trains, recording
simultaneously from the two H1 neurons located in the lobula plate of the fly
Chrysomya megacephala. The fly views two types of stimuli, corresponding to
rotational and translational displacements. If the reconstructed stimulus is to
be represented by a Volterra series and correlations between spikes are to be
taken into account, first order expansions are insufficient and we have to go
to second order, at least. In this case higher order correlation functions have
to be manipulated, whose size may become prohibitively large. We therefore
develop a Gaussian-like representation for fourth order correlation functions,
which works exceedingly well in the case of the fly. The reconstructions using
this Gaussian-like representation are very similar to the reconstructions using
the experimental correlation functions. The overall contribution to rotational
stimulus reconstruction of the second order kernels - measured by a chi-squared
averaged over the whole experiment - is only about 8% of the first order
contribution. Yet if we introduce an instant-dependent chi-square to measure
the contribution of second order kernels at special events, we observe an up to
100% improvement. As may be expected, for translational stimuli the
reconstructions are rather poor. The Gaussian-like representation could be a
valuable aid in population coding with large number of neurons
- …
