2,892 research outputs found
The Neural Representation Benchmark and its Evaluation on Brain and Machine
A key requirement for the development of effective learning representations
is their evaluation and comparison to representations we know to be effective.
In natural sensory domains, the community has viewed the brain as a source of
inspiration and as an implicit benchmark for success. However, it has not been
possible to directly test representational learning algorithms directly against
the representations contained in neural systems. Here, we propose a new
benchmark for visual representations on which we have directly tested the
neural representation in multiple visual cortical areas in macaque (utilizing
data from [Majaj et al., 2012]), and on which any computer vision algorithm
that produces a feature space can be tested. The benchmark measures the
effectiveness of the neural or machine representation by computing the
classification loss on the ordered eigendecomposition of a kernel matrix
[Montavon et al., 2011]. In our analysis we find that the neural representation
in visual area IT is superior to visual area V4. In our analysis of
representational learning algorithms, we find that three-layer models approach
the representational performance of V4 and the algorithm in [Le et al., 2012]
surpasses the performance of V4. Impressively, we find that a recent supervised
algorithm [Krizhevsky et al., 2012] achieves performance comparable to that of
IT for an intermediate level of image variation difficulty, and surpasses IT at
a higher difficulty level. We believe this result represents a major milestone:
it is the first learning algorithm we have found that exceeds our current
estimate of IT representation performance. We hope that this benchmark will
assist the community in matching the representational performance of visual
cortex and will serve as an initial rallying point for further correspondence
between representations derived in brains and machines.Comment: The v1 version contained incorrectly computed kernel analysis curves
and KA-AUC values for V4, IT, and the HT-L3 models. They have been corrected
in this versio
Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition
The primate visual system achieves remarkable visual object recognition
performance even in brief presentations and under changes to object exemplar,
geometric transformations, and background variation (a.k.a. core visual object
recognition). This remarkable performance is mediated by the representation
formed in inferior temporal (IT) cortex. In parallel, recent advances in
machine learning have led to ever higher performing models of object
recognition using artificial deep neural networks (DNNs). It remains unclear,
however, whether the representational performance of DNNs rivals that of the
brain. To accurately produce such a comparison, a major difficulty has been a
unifying metric that accounts for experimental limitations such as the amount
of noise, the number of neural recording sites, and the number trials, and
computational limitations such as the complexity of the decoding classifier and
the number of classifier training examples. In this work we perform a direct
comparison that corrects for these experimental limitations and computational
considerations. As part of our methodology, we propose an extension of "kernel
analysis" that measures the generalization accuracy as a function of
representational complexity. Our evaluations show that, unlike previous
bio-inspired models, the latest DNNs rival the representational performance of
IT cortex on this visual object recognition task. Furthermore, we show that
models that perform well on measures of representational performance also
perform well on measures of representational similarity to IT and on measures
of predicting individual IT multi-unit responses. Whether these DNNs rely on
computational mechanisms similar to the primate visual system is yet to be
determined, but, unlike all previous bio-inspired models, that possibility
cannot be ruled out merely on representational performance grounds.Comment: 35 pages, 12 figures, extends and expands upon arXiv:1301.353
Recommended from our members
Mediterranean cyclones and windstorms in a changing climate
Changes in the frequency and intensity of cyclones and associated windstorms affecting the Medi-terranean region simulated under enhanced Greenhouse Gas forcing conditions are investigated. The analysis is based on 7 climate model integrations performed with two coupled global models (ECHAM5 MPIOM and INGV CMCC), comparing the end of the twentieth century and at least the first half of the twenty-first century. As one of the models has a considerably enhanced resolution of the atmosphere and the ocean, it is also investigated whether the climate change signals are influenced by the model resolution. While the higher resolved simulation is closer to reanalysis climatology, both in terms of cyclones and windstorm distributions, there is no evidence for an influence of the resolution on the sign of the climate change signal. All model simulations show a reduction in the total number of cyclones crossing the Mediterranean region under climate change conditions. Exceptions are Morocco and the Levant region, where the models predict an increase in the number of cyclones. The reduction is especially strong for intense cyclones in terms of their Laplacian of pressure. The influence of the simulated positive shift in the NAO Index on the cyclone decrease is restricted to the Western Mediterranean region, where it explains 10–50 % of the simulated trend, depending on the individual simulation. With respect to windstorms, decreases are simulated over most of the Mediterranean basin. This overall reduction is due to a decrease in the number of events associated with local cyclones, while the number of events associated with cyclones outside of the Mediterranean region slightly increases. These systems are, however, less intense in terms of their integrated severity over the Mediterranean area, as they mostly affect the fringes of the region. In spite of the general reduction in total numbers, several cyclones and windstorms of intensity unknown under current climate conditions are identified for the scenario simulations. For these events, no common trend exists in the individual simulations. Thus, they may rather be attributed to long-term (e.g. decadal) variability than to the Greenhouse Gas forcing. Nevertheless, the result indicates that high-impact weather systems will remain an important risk in the Mediterranean Basin
Impaired perceptual learning in a mouse model of Fragile X syndrome is mediated by parvalbumin neuron dysfunction and is reversible.
To uncover the circuit-level alterations that underlie atypical sensory processing associated with autism, we adopted a symptom-to-circuit approach in the Fmr1-knockout (Fmr1-/-) mouse model of Fragile X syndrome. Using a go/no-go task and in vivo two-photon calcium imaging, we find that impaired visual discrimination in Fmr1-/- mice correlates with marked deficits in orientation tuning of principal neurons and with a decrease in the activity of parvalbumin interneurons in primary visual cortex. Restoring visually evoked activity in parvalbumin cells in Fmr1-/- mice with a chemogenetic strategy using designer receptors exclusively activated by designer drugs was sufficient to rescue their behavioral performance. Strikingly, human subjects with Fragile X syndrome exhibit impairments in visual discrimination similar to those in Fmr1-/- mice. These results suggest that manipulating inhibition may help sensory processing in Fragile X syndrome
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
- …
