61 research outputs found
Factors influencing success of clinical genome sequencing across a broad spectrum of disorders
To assess factors influencing the success of whole-genome sequencing for mainstream clinical diagnosis, we sequenced 217 individuals from 156 independent cases or families across a broad spectrum of disorders in whom previous screening had identified no pathogenic variants. We quantified the number of candidate variants identified using different strategies for variant calling, filtering, annotation and prioritization. We found that jointly calling variants across samples, filtering against both local and external databases, deploying multiple annotation tools and using familial transmission above biological plausibility contributed to accuracy. Overall, we identified disease-causing variants in 21% of cases, with the proportion increasing to 34% (23/68) for mendelian disorders and 57% (8/14) in family trios. We also discovered 32 potentially clinically actionable variants in 18 genes unrelated to the referral disorder, although only 4 were ultimately considered reportable. Our results demonstrate the value of genome sequencing for routine clinical diagnosis but also highlight many outstanding challenges
The interaction of vasoactive substances during exercise modulates platelet aggregation in hypertension and coronary artery disease
<p>Abstract</p> <p>Background</p> <p>Acute vigorous exercise, associated with increased release of plasma catecholamines, transiently increases the risk of primary cardiac arrest. We tested the effect of acute submaximal exercise on vasoactive substances and their combined result on platelet function.</p> <p>Methods</p> <p>Healthy volunteers, hypertensive patients and patients with coronary artery disease (CAD) performed a modified treadmill exercise test. We determined plasma catecholamines, thromboxane A<sub>2</sub>, prostacyclin, endothelin-1 and platelet aggregation induced by adenosine diphosphate (ADP) and collagen at rest and during exercise.</p> <p>Results</p> <p>Our results during exercise showed a) platelet activation (increased thromboxane B<sub>2</sub>, TXB<sub>2</sub>), b) increased prostacyclin release from endothelium and c) decreased platelet aggregation in all groups, significantly more in healthy volunteers than in patients with CAD (with hypertensives lying in between these two groups).</p> <p>Conclusion</p> <p>Despite the pronounced activation of Sympathetic Nervous System (SNS) and increased TXB<sub>2 </sub>levels during acute exercise platelet aggregation decreases, possibly to counterbalance the prothrombotic state. Since this effect seems to be mediated by the normal endothelium (through prostacyclin and nitric oxide), in conditions characterized by endothelial dysfunction (hypertension, CAD) reduced platelet aggregation is attenuated, thus posing such patients in increased risk for thrombotic complications.</p
Expression and significance of hypoxia-inducible factor-1 alpha and MDR1/P-glycoprotein in human colon carcinoma tissue and cells
Early termination of ISRCTN45828668, a phase 1/2 prospective, randomized study of Sulfasalazine for the treatment of progressing malignant gliomas in adults
BACKGROUND: Sulfasalazine, a NF-kappaB and x(c)-cystine/glutamate antiport inhibitor, has demonstrated a strong antitumoral potential in preclinical models of malignant gliomas. As it presents an excellent safety profile, we initiated a phase 1/2 clinical study of this anti-inflammatory drug for the treatment of recurrent WHO grade 3 and 4 astrocytic gliomas in adults. METHODS: 10 patients with advanced recurrent anaplastic astrocytoma (n = 2) or glioblastoma (n = 8) aged 32-62 years were recruited prior to the planned interim analysis of the study. Subjects were randomly assigned to daily doses of 1.5, 3, 4.5, or 6 grams of oral sulfasalazine, and treated until clinical or radiological evidence of disease progression or the development of serious or unbearable side effects. Primary endpoints were the evaluation of toxicities according to the CTCAE v.3.0, and the observation of radiological tumor responses based on MacDonald criteria. RESULTS: No clinical response was observed. One tumor remained stable for 2 months with sulfasalazine treatment, at the lowest daily dose of the drug. The median progression-free survival was 32 days. Side effects were common, as all patients developed grade 1-3 adverse events (mean: 7.2/patient), four patients developed grade 4 toxicity. Two patients died while on treatment or shortly after its discontinuation. CONCLUSION: Although the proper influence of sulfasalazine treatment on patient outcome was difficult to ascertain in these debilitated patients with a large tumor burden (median KPS = 50), ISRCTN45828668 was terminated after its interim analysis. This study urges to exert cautiousness in future trials of Sulfasalazine for the treatment of malignant gliomas. TRIAL REGISTRATION: Current Controlled Trials ISRCTN45828668
Activation of Hif1α by the Prolylhydroxylase Inhibitor Dimethyoxalyglycine Decreases Radiosensitivity
Hypoxia inducible factor 1α (Hif1α) is a stress responsive transcription factor, which regulates the expression of genes required for adaption to hypoxia. Hif1α is normally hydroxylated by an oxygen-dependent prolylhydroxylase, leading to degradation and clearance of Hif1α from the cell. Under hypoxic conditions, the activity of the prolylhydroxylase is reduced and Hif1α accumulates. Hif1α is also constitutively expressed in tumor cells, where it is associated with resistance to ionizing radiation. Activation of the Hif1α transcriptional regulatory pathway may therefore function to protect normal cells from DNA damage caused by ionizing radiation. Here, we utilized the prolylhydroxylase inhibitor dimethyloxalylglycine (DMOG) to elevate Hif1α levels in mouse embryonic fibroblasts (MEFs) to determine if DMOG could function as a radioprotector. The results demonstrate that DMOG increased Hif1α protein levels and decreased the sensitivity of MEFs to ionizing radiation. Further, the ability of DMOG to function as a radioprotector required Hif1α, indicating a key role for Hif1α's transcriptional activity. DMOG also induced the Hif1α -dependent accumulation of several DNA damage response proteins, including CHD4 and MTA3 (sub-units of the NuRD deacetylase complex) and the Suv39h1 histone H3 methyltransferase. Depletion of Suv39h1, but not CHD4 or MTA3, reduced the ability of DMOG to protect cells from radiation damage, implicating increased histone H3 methylation in the radioprotection of cells. Finally, treatment of mice with DMOG prior to total body irradiation resulted in significant radioprotection of the mice, demonstrating the utility of DMOG and related prolylhydroxylase inhibitors to protect whole organisms from ionizing radiation. Activation of Hif1α through prolylhydroxylase inhibition therefore identifies a new pathway for the development of novel radiation protectors
Identification of a novel UMOD mutation (c.163G>A) in a Brazilian family with autosomal dominant tubulointerstitial kidney disease
The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases
The Ca2+-sensing receptor (CaSR) is a dimeric family C G protein-coupled receptor that is expressed in calcitropic tissues such as the parathyroid glands and the kidneys and signals via G proteins and β-arrestin. The CaSR has a pivotal role in bone and mineral metabolism, as it regulates parathyroid hormone secretion, urinary Ca2+ excretion, skeletal development and lactation. The importance of the CaSR for these calcitropic processes is highlighted by loss-of-function and gain-of-function CaSR mutations that cause familial hypocalciuric hypercalcaemia and autosomal dominant hypocalcaemia, respectively, and also by the fact that alterations in parathyroid CaSR expression contribute to the pathogenesis of primary and secondary hyperparathyroidism. Moreover, the CaSR is an established therapeutic target for hyperparathyroid disorders. The CaSR is also expressed in organs not involved in Ca2+ homeostasis: it has noncalcitropic roles in lung and neuronal development, vascular tone, gastrointestinal nutrient sensing, wound healing and secretion of insulin and enteroendocrine hormones. Furthermore, the abnormal expression or function of the CaSR is implicated in cardiovascular and neurological diseases, as well as in asthma, and the CaSR is reported to protect against colorectal cancer and neuroblastoma but increase the malignant potential of prostate and breast cancers
Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review
Infectious diseases in allogeneic haematopoietic stem cell transplantation: prevention and prophylaxis strategy guidelines 2016
Mouse models for inherited endocrine and metabolic disorders.
In vivo models represent important resources for investigating the physiological mechanisms underlying endocrine and metabolic disorders, and for pre-clinical translational studies that may include the assessments of new treatments. In the study of endocrine diseases, which affect multiple organs, in vivo models provide specific advantages over in vitro models, which are limited to investigation of isolated systems. In recent years, the mouse has become the popular choice for developing such in vivo mammalian models, as it has a genome that shares ∼85% identity to that of man, and has many physiological systems that are similar to those in man. Moreover, methods have been developed to alter the expression of genes in the mouse, thereby generating models for human diseases, which may be due to loss- or gain-of-function mutations. The methods used to generate mutations in the mouse genome include: chemical mutagenesis; conventional, conditional and inducible knockout models; knockin models and transgenic models, and these strategies are often complementary. This review describes some of the different strategies that are utilised for generating mouse models. In addition, some mouse models that have been successfully generated by these methods for some human hereditary endocrine and metabolic disorders are reviewed. In particular, the mouse models generated for parathyroid disorders, which include: the multiple endocrine neoplasias; hyperparathyroidism-jaw tumour syndrome; disorders of the calcium-sensing receptor and forms of inherited hypoparathyroidism are discussed. The advances that have been made in our understanding of the mechanisms of these human diseases by investigations of these mouse models are described
- …
