485 research outputs found

    Giant magnetoimpedance in Vitrovac amorphous ribbons over [0.3-400 MHz] frequency range

    Full text link
    Giant magneto impedance (GMI) effect for as-cast Vitrovac®^{\textrm{\scriptsize\textregistered}} amorphous ribbons (Vacuumschmelze, Germany) in two configurations (parallel and normal to the ribbon axis) is studied over the frequency range [0.3-400 MHz] and under static magnetic fields -160 Oe <Hdc<< H_{dc} < +160 Oe. A variety of peak features and GMI ratio values, falling within a small field range, are observed and discussed.Comment: Paper submitted to International Conference on Magnetism 2003 (ICM Rome 2003

    A Fragment-Based Approach for the Development of G-Quadruplex Ligands: Role of the Amidoxime Moiety

    Get PDF
    G-quadruplex (G4) nucleic acid structures have been reported to be involved in several human pathologies, including cancer, neurodegenerative disorders and infectious diseases; however, G4 targeting compounds still need implementation in terms of drug-like properties and selectivity in order to reach the clinical use. So far, G4 ligands have been mainly identified through high-throughput screening methods or design of molecules with pre-set features. Here, we describe the development of new heterocyclic ligands through a fragment-based drug discovery (FBDD) approach. The ligands were designed against the major G4 present in the long terminal repeat (LTR) promoter region of the human immunodeficiency virus-1 (HIV-1), the stabilization of which has been shown to suppress viral gene expression and replication. Our method is based on the generation of molecular fragment small libraries, screened against the target to further elaborate them into lead compounds. We screened 150 small molecules, composed by structurally and chemically different fragments, selected from commercially available and in-house compounds; synthetic elaboration yielded several G4 ligands and two final G4 binders, both embedding an amidoxime moiety; one of these two compounds showed preferential binding for the HIV-1 LTR G4. This work presents the discovery of a novel potential pharmacophore and highlights the possibility to apply a fragment-based approach to develop G4 ligands with unexpected chemical features

    Synthesis and magnetic properties of cobalt-iron/cobalt-ferrite soft/hard magnetic core/shell nanowires

    Get PDF
    A straightforward method for the synthesis of CoFe2.7/CoFe2O4 core/shell nanowires is described. The proposed method starts with a conventional pulsed electrodeposition procedure on alumina nanoporous template. The obtained CoFe2.7 nanowires are released from the template and allowed to oxidize at room conditions over several weeks. The effects of partial oxidation on the structural and magnetic properties were studied by x-ray spectrometry, magnetometry, and scanning and transmission electron microscopy. The results indicate that the final nanowires are composed of 5 nm iron-cobalt alloy nanoparticles. Releasing the nanowires at room conditions promoted surface oxidation of the nanoparticles and created a CoFe2O4 shell spinel-like structure. The shell avoids internal oxidation and promotes the formation of bi-magnetic soft/hard magnetic core/shell nanowires. The magnetic properties of both the initial single-phase CoFe2.7 nanowires and the final core/shell nanowires, reveal that the changes in the properties from the array are due to the oxidation more than effects associated with released processes (disorder and agglomeration).Fil: Londoño Calderon, Cesar Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; ArgentinaFil: Moscoso Londoño, Oscar. Universidade Estadual de Campinas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Muraca, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidade Estadual de Campinas; Brasil. Brazilian Center for Research in Energy and Materials. Brazilian Nanotechnology National Laboratory; BrasilFil: Arzuza, Luis. Universidade Estadual de Campinas; BrasilFil: Carvalho, Peterson. Universidade Estadual de Campinas; BrasilFil: Pirota, Kleber Roberto. Universidade Estadual de Campinas; BrasilFil: Knobel, Marcelo. Universidade Estadual de Campinas; BrasilFil: Pampillo, Laura Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; ArgentinaFil: Martinez Garcia, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Formosa. Facultad de Recursos Naturales; Argentin

    A Catalytic and Selective Scissoring Molecular Tool for Quadruplex Nucleic Acids

    Get PDF
    A copper complex embedded in the structure of a water-soluble naphthalene diimide has been designed to bind and cleave G-quadruplex DNA. We describe the properties of this ligand, including its catalytic activity in the generation of ROS. FRET melting, CD, NMR, gel sequencing, and mass spectrometry experiments highlight a unique and unexpected selectivity in cleaving G-quadruplex sequences. This selectivity relies both on the binding affinity and structural features of the targeted G-quadruplexes

    Characterization of the magnetic interactions of multiphase magnetocaloric materials using first-order reversal curve analysis

    Get PDF
    In order to understand the magnetocaloric response of materials, it is important to analyze the interactions between the different phases present in them. Recent models have analyzed the influence of these interactions on the magnetocaloric response of composites, providing an estimate value of the interaction field that is consistent with experimental results. This paper analyzes to which extent magnetization first-order reversal curve (FORC) method can be used to calculate these interactions. It is shown that the different field ranges that are explored using these techniques (inside the hysteretic region for FORC; close to magnetic saturation for magnetocaloric effect) produce interaction field values that differ in order of magnitude, with FORC being sensitive to the lower values of the interaction field and magnetocaloric analysis accounting for the larger interactions

    High frequency magnetic behavior through the magnetoimpedance effect in CoFeB/(Ta, Ag, Cu) multilayered ferromagnetic thin films

    Full text link
    We studied the dynamics of magnetization through an investigation of the magnetoimpedance effect in CoFeB/(Ta, Ag, Cu) multilayered thin films grown by magnetron sputtering. Impedance measurements were analyzed in terms of the mechanisms responsible for their variations at different frequency intervals and the magnetic and structural properties of the multilayers. Analysis of the mechanisms responsible for magnetoimpedance according to frequency and external magnetic field showed that for the CoFeB/Cu multilayer, ferromagnetic resonance (FMR) contributes significantly to the magnetoimpedance effect at frequencies close to 470 MHz. This frequency is low when compared to the results obtained for CoFeB/Ta and CoFeB/Ag multilayers and is a result of the anisotropy distribution and non-formation of regular bilayers in this sample. The MImax values occurred at different frequencies according to the used non-magnetic metal. Variations between 25% and 30% were seen for a localized frequency band, as in the case of CoFeB/Ta and CoFeB/Ag, as well as for a wide frequency range, in the case of CoFeB/Cu.Comment: 14 pages, 5 figure

    Microscopic reversal magnetization mechanisms in CoCrPt thin films with perpendicular magnetic anisotropy: Fractal structure versus labyrinth stripe domains

    Get PDF
    The magnetization reversal of CoCrPt thin films has been examined as a function of thickness using magneto-optical Kerr effect (MOKE) microscopy and first-order reversal curves (FORC) techniques. MOKE images show differentiated magnetization reversal regimes for different film thicknesses: while the magnetic domains in 10-nm-thick CoCrPt film resemble a fractal structure, a labyrinth stripe domain configuration is observed for 20-nm-thick films. Although FORC distributions for both cases show two main features related to irreversible processes (propagation and annihilation fields) separated by a mostly flat region, this method can nonetheless distinguish which magnetization reversal process is active according to the horizontal profile of the first FORC peak, or propagation field. A single-peak FORC profile corresponds to the fractal magnetization reversal, whereas a flat-peak FORC profile corresponds to the labyrinth magnetization reversal

    Structural and magnetic behavior of ferrogels obtained by freezing thawing of polyvinyl alcohol/poly (acrylic acid) (PAA)-coated iron oxide nanoparticles

    Get PDF
    Superparamagnetic ferrogels with high swelling ability and potential applications as solvent absorbers and stimuli-responsive drug delivery devices were obtained by a non-toxic and environmentally friendly route based on dispersion of poly(acrylic acid)-coated iron oxide nanoparticles (PAA-coated NPs) in poly(vinyl alcohol) (PVA) solutions followed by freezing–thawing. Presence of carboxylate groups arising from the PAA coating allowed hydrogen bonding formation between NPs and PVA and enabled the synthesis of optically homogenous, superparamagnetic materials formed by a homogenous distribution of NPs diffuse clusters in the PVA matrix. The addition of PAA-coated NPs produced a remarkable increase in crystallinity degree, thermal degradation and swelling percentage respect to the neat matrix, which demonstrates that ferrogels with improved properties can be obtained by this procedure. Thereafter, combination of a cryogenic technique with the use of non-toxic components and magnetic NPs coated by a pH sensitive polymer makes these ferrogels very promising for applications in the biomedical field.Fil: Moscoso Londoño, Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; Argentina. Universidad de Buenos Aires. Facultad de Ingenieria. Departamento de Fisica. Laboratorio de Sólidos Amorfos; ArgentinaFil: Gonzalez, Jimena Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina. Universidad Nacional de Mar del Plata; ArgentinaFil: Muraca, D.. Universidade Estadual de Campinas. Instituto de Física ’Gleb Wataghin’. Laboratorio de Materiais e Baixas Temperaturas; Brasil;Fil: Hoppe, Cristina Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina. Universidad Nacional de Mar del Plata; ArgentinaFil: Alvarez, Vera Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina. Universidad Nacional de Mar del Plata; ArgentinaFil: López Quintela, A.. Universidad de Santiago de Compostela; España;Fil: Socolovsky, Leandro Martin. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto D/tec.y Cs.de la Ing.;Fil: Pirota, K. R.. Universidade Estadual de Campinas. Instituto de Física ’Gleb Wataghin’. Laboratorio de Materiais e Baixas Temperaturas; Brasil
    corecore