1,816 research outputs found

    Energy and Heat Fluctuations in a Temperature Quench

    Full text link
    Fluctuations of energy and heat are investigated during the relaxation following the instantaneous temperature quench of an extended system. Results are obtained analytically for the Gaussian model and for the large NN model quenched below the critical temperature TCT_C. The main finding is that fluctuations exceeding a critical threshold do condense. Though driven by a mechanism similar to that of Bose-Einstein condensation, this phenomenon is an out-of-equilibrium feature produced by the breaking of energy equipartition occurring in the transient regime. The dynamical nature of the transition is illustrated by phase diagrams extending in the time direction.Comment: To be published in the Proceedings of the Research Program "Small system non equilibrium fluctuations, dynamics and stochastics, and anomalous behavior", Kavli Institute for Theoretical Physics China, July 2013. 40 pages, 9 figure

    Heat fluctuations in Ising models coupled with two different heat baths

    Full text link
    Monte Carlo simulations of Ising models coupled to heat baths at two different temperatures are used to study a fluctuation relation for the heat exchanged between the two thermostats in a time τ\tau. Different kinetics (single--spin--flip or spin--exchange Kawasaki dynamics), transition rates (Glauber or Metropolis), and couplings between the system and the thermostats have been considered. In every case the fluctuation relation is verified in the large τ\tau limit, both in the disordered and in the low temperature phase. Finite-τ\tau corrections are shown to obey a scaling behavior.Comment: 5 pages, 2 figures. To be published in Journal of Physics A: Mathematical and Theoretical as fast track communicatio

    Fluctuation relations in non-equilibrium stationary states of Ising models

    Full text link
    Fluctuation relations for the entropy production in non equilibrium stationary states of Ising models are investigated by Monte Carlo simulations. Systems in contact with heat baths at two different temperatures or subject to external driving will be studied. In the first case, by considering different kinetic rules and couplings with the baths, the behavior of the probability distributions of the heat exchanged in a time τ\tau with the thermostats, both in the disordered and in the low temperature phase, are discussed. The fluctuation relation is always verified in the large τ\tau limit and deviations from linear response theory are observed. Finite-τ\tau corrections are shown to obey a scaling behavior. In the other case the system is in contact with a single heat bath but work is done by shearing it. Also for this system the statistics collected for the mechanical work shows the validity of the fluctuation relation and preasymptotic corrections behave analogously to the case with two baths.Comment: 9 figure

    Phase separation of binary fluids with dynamic temperature

    Full text link
    Phase separation of binary fluids quenched by contact with cold external walls is considered. Navier-Stokes, convection-diffusion, and energy equations are solved by lattice Boltzmann method coupled with finite-difference schemes. At high viscosity, different morphologies are observed by varying the thermal diffusivity. In the range of thermal diffusivities with domains growing parallel to the walls, temperature and phase separation fronts propagate towards the inner of the system with power-law behavior. At low viscosity hydrodynamics favors rounded shapes, and complex patterns with different lengthscales appear. Off-symmetrical systems behave similarly but with more ordered configurations.Comment: Accepted for publication in Phys. Rev. E, 11 figures, best quality figures available on reques

    ING116070: a study of the pharmacokinetics and antiviral activity of dolutegravir in cerebrospinal fluid in HIV-1-infected, antiretroviral therapy-naive subjects.

    Get PDF
    BackgroundDolutegravir (DTG), a once-daily, human immunodeficiency virus type 1 (HIV-1) integrase inhibitor, was evaluated for distribution and antiviral activity in cerebrospinal fluid (CSF).MethodsING116070 is an ongoing, single-arm, open-label, multicenter study in antiretroviral therapy-naive, HIV-1-infected adults. Subjects received DTG (50 mg) plus abacavir/lamivudine (600/300 mg) once daily. The CSF and plasma (total and unbound) DTG concentrations were measured at weeks 2 and 16. The HIV-1 RNA levels were measured in CSF at baseline and weeks 2 and 16 and in plasma at baseline and weeks 2, 4, 8, 12, and 16.ResultsThirteen white men enrolled in the study; 2 withdrew prematurely, 1 because of a non-drug-related serious adverse event (pharyngitis) and 1 because of lack of treatment efficacy. The median DTG concentrations in CSF were 18 ng/mL (range, 4-23 ng/mL) at week 2 and 13 ng/mL (4-18 ng/mL) at week 16. Ratios of DTG CSF to total plasma concentration were similar to the unbound fraction of DTG in plasma. Median changes from baseline in CSF (n = 11) and plasma (n = 12) HIV-1 RNA were -3.42 and -3.04 log10 copies/mL, respectively. Nine of 11 subjects (82%) had plasma and CSF HIV-1 RNA levels <50 copies/mL and 10 of 11 (91%) had CSF HIV-1 RNA levels <2 copies/mL at week 16.ConclusionsThe DTG concentrations in CSF were similar to unbound plasma concentrations and exceeded the in vitro 50% inhibitory concentration for wild-type HIV (0.2 ng/mL), suggesting that DTG achieves therapeutic concentrations in the central nervous system. The HIV-1 RNA reductions were similar in CSF and plasma. Clinical Trials Registration. NCT01499199

    Study of a high spatial resolution 10B-based thermal neutron detector for application in neutron reflectometry: the Multi-Blade prototype

    Full text link
    Although for large area detectors it is crucial to find an alternative to detect thermal neutrons because of the 3He shortage, this is not the case for small area detectors. Neutron scattering science is still growing its instruments' power and the neutron flux a detector must tolerate is increasing. For small area detectors the main effort is to expand the detectors' performances. At Institut Laue-Langevin (ILL) we developed the Multi-Blade detector which wants to increase the spatial resolution of 3He-based detectors for high flux applications. We developed a high spatial resolution prototype suitable for neutron reflectometry instruments. It exploits solid 10B-films employed in a proportional gas chamber. Two prototypes have been constructed at ILL and the results obtained on our monochromatic test beam line are presented here
    corecore