603 research outputs found

    Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors.

    Get PDF
    Nicotine stimulates the activity of mesolimbic dopamine neurons, which is believed to mediate the rewarding and addictive properties of tobacco use. Accumulating evidence suggests that the endocannabinoid system might play a major role in neuronal mechanisms underlying the rewarding properties of drugs of abuse, including nicotine. Here, we investigated the modulation of nicotine effects by the endocannabinoid system on dopamine neurons in the ventral tegmental area with electrophysiological techniques in vivo and in vitro. We discovered that pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme that catabolizes fatty acid ethanolamides, among which the endocannabinoid anandamide (AEA) is the best known, suppressed nicotine-induced excitation of dopamine cells. Importantly, this effect was mimicked by the administration of the FAAH substrates oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), but not methanandamide, the hydrolysis resistant analog of AEA. OEA and PEA are naturally occurring lipid signaling molecules structurally related to AEA, but devoid of affinity for cannabinoid receptors. They blocked the effects of nicotine by activation of the peroxisome proliferator-activated receptor-α (PPAR-α), a nuclear receptor transcription factor involved in several aspects of lipid metabolism and energy balance. Activation of PPAR-α triggered a nongenomic stimulation of tyrosine kinases, which might lead to phosphorylation and negative regulation of neuronal nicotinic acetylcholine receptors. These data indicate for the first time that the anorexic lipids OEA and PEA possess neuromodulatory properties as endogenous ligands of PPAR-α in the brain and provide a potential new target for the treatment of nicotine addictio

    Meta-review of systematic and meta-analytic reviews on family psychoeducation for schizophrenia

    Get PDF
    The purpose of family psychoeducation is to increase patients’ and their families’ knowledge and understanding of their illness and treatment. Improved knowledge of schizophrenia is expected to enable people to cope better with their illness. The aim of this review is to summarize and appraise evidence from published systematic and meta-analytic reviews on family psychoeducation in schizophrenia. Thorough search and analysis of reviews on efficacy of family psychoeducation in schizophrenia were carried out in PubMed/Medline (19872015), Ovid/Psych Info (1987-2015), and the Cochrane Database of Systematic Reviews. We included only reviews reporting quantitative summary statistics on studies carried out in patients with schizophrenia and written in English. Review methodology was assessed using the Assessment of Multiple Systematic Reviews (AMSTAR) checklist. Double check by two independent assessors was applied. Nine reviews meeting inclusion/exclusion criteria were included in the meta-review. Risk of relapse was reduced in protocols that included family members, whether conducted in single family or in multifamily group sessions. However, effectiveness seems not to be maintained at follow-up. Hospital admission/re-hospitalization was less influenced by family psychoeducation, and no reproducible effect on compliance/medication adherence was found. Overall, quality of evidence on the effectiveness of family psychoeducation in schizophrenia is poo

    Functional Adaptation in the Brain Habenulo–Mesencephalic Pathway During Cannabinoid Withdrawal

    Get PDF
    The mesolimbic reward system originating from dopamine neurons in the ventral tegmental area (VTA) of the midbrain shows a profound reduction in function during cannabinoid withdrawal. This condition may underlie aversive states that lead to compulsive drug seeking and relapse. The lateral habenula (LHb) exerts negative control over the VTA via the GABA rostromedial tegmental nucleus (RMTg), representing a potential convergence point for drug-induced opponent processes. We hypothesized that the LHb-RMTg pathway might be causally involved in the hypodopaminergic state during cannabinoid withdrawal. To induce Delta 9-tetrahydrocannabinol (THC) dependence, adult male Sprague-Dawley rats were treated with THC (15 mg/kg, i.p.) twice daily for 6.5-7 days. Administration of the cannabinoid antagonist rimonabant (5 mg/kg, i.p.) precipitated a robust behavioral withdrawal syndrome, while abrupt THC suspension caused milder signs of abstinence. Extracellular single unit recordings confirmed a marked decrease in the discharge frequency and burst firing of VTA dopamine neurons during THC withdrawal. The duration of RMTg-evoked inhibition was longer in THC withdrawn rats. Additionally, the spontaneous activity of RMTg neurons and of LHb neurons was strongly depressed during cannabinoid withdrawal. These findings support the hypothesis that functional changes in the habenulo-mesencephalic circuit are implicated in the mechanisms underlying substance use disorders

    PHARMACOLOGICAL APPROACHES TO SARS-CoV-2 INFECTION: FROM DRUG REPOSITIONING FOR COVID-19 TREATMENT TO DISEASE ARREST/PREVENTION WITH MoAbs AND NOVEL ANTIVIRALS

    Get PDF
    COVID-19 disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the major emergencies that have affected health care systems and society in recent decades. At the end of winter 2021-2022, the number of patients infected with SARS-CoV-2 and especially those suffering from severe COVID-19 is decreasing in Europe. This is due to the protective effect of anti-SARS-CoV-2 vaccines and the increasing number of people who had COVID-19, thus developing a certain immunity. However, vaccines to prevent the disease did not appear until more than one year after the emergence of SARS-CoV-2, so the initial medical approaches to control the disease focused on the existing drugs that were considered suitable for controlling the pathological events caused by the virus as far as was known at the time. Unfortunately, due in part to the limited initial knowledge of the molecular details of the pathology of COVID-19, many of the proposed drugs fell short of expectations and were abandoned. Over time, the challenge of understanding the mechanisms behind COVID-19 has generated a large body of knowledge about how this beta-coronavirus gains control of the host during infection, a knowledge that has been used to redefine treatment strategies by repurposing existing drugs and to explore new drugs. Here, we draw a picture of the major strategies and groups of drugs studied and provide a critical overview of their efficacy and safety based on the available literature data. The main topics covered are repurposed drugs, anticoagulants, anti-cytokine agents, monoclonal antibodies against SARS-CoV-2, and small antiviral molecules

    Common variants at 2q11.2, 8q21.3, and 11q13.2 are associated with major mood disorders

    Get PDF
    Bipolar disorder (BPD) and major depressive disorder (MDD) are primary major mood disorders. Recent studies suggest that they share certain psychopathological features and common risk genes, but unraveling the full genetic architecture underlying the risk of major mood disorders remains an important scientific task. The public genome-wide association study (GWAS) data sets offer the opportunity to examine this topic by utilizing large amounts of combined genetic data, which should ultimately allow a better understanding of the onset and development of these illnesses. Genome-wide meta-analysis was performed by combining two GWAS data sets on BPD and MDD (19,637 cases and 18,083 controls), followed by replication analyses for the loci of interest in independent 12,364 cases and 76,633 controls from additional samples that were not included in the two GWAS data sets. The single-nucleotide polymorphism (SNP) rs10791889 at 11q13.2 was significant in both discovery and replication samples. When combining all samples, this SNP and multiple other SNPs at 2q11.2 (rs717454), 8q21.3 (rs10103191), and 11q13.2 (rs2167457) exhibited genome-wide significant association with major mood disorders. The SNPs in 2q11.2 and 8q21.3 were novel risk SNPs that were not previously reported, and SNPs at 11q13.2 were in high LD with potential BPD risk SNPs implicated in a previous GWAS. The genome-wide significant loci at 2q11.2 and 11q13.2 exhibited strong effects on the mRNA expression of certain nearby genes in cerebellum. In conclusion, we have identified several novel loci associated with major mood disorders, adding further support for shared genetic risk between BPD and MDD. Our study highlights the necessity and importance of mining public data sets to explore risk genes for complex diseases such as mood disorders

    Augmented acquisition of cocaine self-administration and altered brain glucose metabolism in adult female but not male rats exposed to a cannabinoid agonist during adolescence

    Get PDF
    Marijuana consumption during adolescence has been proposed to be a stepping stone for adult cocaine addiction. However, experimental evidence for this hypothesis is missing. In this work we chronically injected male and female Wistar rats with either the cannabinoid agonist CP 55,940 (CP; 0.4 mg/kg) or its corresponding vehicle. Adult acquisition (seven 30 min daily sessions) and maintenance (fourteen 2 h daily sessions) of cocaine self administration (1 mg/kg), food reinforced operant learning under conditions of normal (ad libitum access to food), and high motivation (food restriction schedule) were measured. Additionally, brain metabolic activity was analyzed by means of [18F] fluorodeoxyglucose positron emission tomography. During the acquisition phase, female CP treated rats showed a higher rate of cocaine self administration as compared to vehicle treated females and males; no differences were found between both male groups. This effect disappeared in the maintenance phase. Moreover, no differences among groups were evident in the food reinforced operant task, pointing to the cocaine specific nature of the effect seen in self administration rather than a general change in reward processing. Basal brain metabolic activity also changed in CP treated females when compared to their vehicle treated counterparts with no differences being found in the males; more specifically we observed a hyper activation of the frontal cortex and a hypo activation of the amygdalo entorhinal cortex. Our results suggest that a chronic exposure to cannabinoids during adolescence alters the susceptibility to acquire cocaine self administration, in a sex specific fashion. This increased susceptibility could be related to thechanges in brain metabolic activity induced by cannabinoids during adolescenceThis work was supported by Grants FIS G03/05 (Red de Trastornos Adictivos), BSO2001-1099, FIS 01-05-01, Plan Nacional sobre Drogas (PNSD) 2001–2003, PNSD 2004–2007, GR-SAL/0260/2004 to EA and Grants INT/2012/ 2002, CB06/01/0079, and CENIT (2006–2009) to MDPublicad

    Modulation of the endocannabinoids N-Arachidonoylethanolamine (AEA) and 2-Arachidonoylglycerol (2-AG) on Executive Functions in Humans

    Get PDF
    Animal studies point to an implication of the endocannabinoid system on executive functions. In humans, several studies have suggested an association between acute or chronic use of exogenous cannabinoids (Δ9-tetrahydrocannabinol) and executive impairments. However, to date, no published reports establish the relationship between endocannabinoids, as biomarkers of the cannabinoid neurotransmission system, and executive functioning in humans. The aim of the present study was to explore the association between circulating levels of plasma endocannabinoids N-arachidonoylethanolamine (AEA) and 2-Arachidonoylglycerol (2-AG) and executive functions (decision making, response inhibition and cognitive flexibility) in healthy subjects. One hundred and fifty seven subjects were included and assessed with the Wisconsin Card Sorting Test; Stroop Color and Word Test; and Iowa Gambling Task. All participants were female, aged between 18 and 60 years and spoke Spanish as their first language. Results showed a negative correlation between 2-AG and cognitive flexibility performance (r = −.37; p<.05). A positive correlation was found between AEA concentrations and both cognitive flexibility (r = .59; p<.05) and decision making performance (r = .23; P<.05). There was no significant correlation between either 2-AG (r = −.17) or AEA (r = −.08) concentrations and inhibition response. These results show, in humans, a relevant modulation of the endocannabinoid system on prefrontal-dependent cognitive functioning. The present study might have significant implications for the underlying executive alterations described in some psychiatric disorders currently associated with endocannabinoids deregulation (namely drug abuse/dependence, depression, obesity and eating disorders). Understanding the neurobiology of their dysexecutive profile might certainly contribute to the development of new treatments and pharmacological approaches
    corecore