684 research outputs found
Dynamic response of flexible square tunnels: centrifuge testing and validation of existing design methodologies
A series of dynamic centrifuge tests were performed on a flexible aluminium square tunnel model embedded in Hostun dry sand. The tests were carried out at the centrifuge facility of the University of Cambridge in order to further improve knowledge regarding the seismic response of rectangular embedded structures and to calibrate currently available design methods. The soil–tunnel system response was recorded with an extensive instrumentation array, comprising miniature accelerometers, pressure cells and position sensors in addition to strain gauges, which recorded the tunnel lining internal forces. Tests were numerically analysed by means of full dynamic time history analysis of the coupled soil–tunnel system. Numerical predictions were compared to the experimental data to validate the effectiveness of the numerical modelling. The interpretation of both experimental and numerical results revealed, among other findings: (a) a rocking response of the model tunnel in addition to racking; (b) residual earth pressures on the tunnel side walls; and (c) residual internal forces after shaking, which are amplified with the tunnel's flexibility. Finally, the calibrated numerical models were used to validate the accuracy of simplified design methods used in engineering practice
Joint Compressed Sensing and Manipulation of Wireless Emissions with Intelligent Surfaces
Programmable, intelligent surfaces can manipulate electromagnetic waves
impinging upon them, producing arbitrarily shaped reflection, refraction and
diffraction, to the benefit of wireless users. Moreover, in their recent form
of HyperSurfaces, they have acquired inter-networking capabilities, enabling
the Internet of Material Properties with immense potential in wireless
communications. However, as with any system with inputs and outputs, accurate
sensing of the impinging wave attributes is imperative for programming
HyperSurfaces to obtain a required response. Related solutions include field
nano-sensors embedded within HyperSurfaces to perform minute measurements over
the area of the HyperSurface, as well as external sensing systems. The present
work proposes a sensing system that can operate without such additional
hardware. The novel scheme programs the HyperSurface to perform compressed
sensing of the impinging wave via simple one-antenna power measurements. The
HyperSurface can jointly be programmed for both wave sensing and wave
manipulation duties at the same time. Evaluation via simulations validates the
concept and highlight its promising potential.Comment: Published at IEEE DCOSS 2019 / IoT4.0 workshop
(https://www.dcoss.org/workshops.html). Funded by the European Union via the
Horizon 2020: Future Emerging Topics - Research and Innovation Action call
(FETOPEN-RIA), grant EU736876, project VISORSURF (http://www.visorsurf.eu
Evaluation of seismic hazard for the assessment of historical elements at risk : description of input and selection of intensity measures
The assessment of historical elements at risk from earthquake loading presents a number of differences from the seismic evaluation of modern structures, for design or retrofitting purposes, which is covered by existing building codes, and for the development of fragility curves, procedures for which have been extensively developed in the past decade. This article briefly discusses: the hazard framework for historical assets, including a consideration of the appropriate return period to be used for such elements at risk; the intensity measures that could be used to describe earthquake shaking for the analysis of historical assets; and available approaches for their assessment. We then discuss various unique aspects of historical assets that mean the characterisation of earthquake loading must be different from that for modern structures. For example, historical buildings are often composed of heterogeneous materials (e.g., old masonry) and they are sometimes located where strong local site effects occur due to: steep topography (e.g., hilltops), basin effects or foundations built on the remains of previous structures. Standard seismic hazard assessment undertaken for modern structures and the majority of sites is generally not appropriate. Within the PERPETUATE project performance-based assessments, using nonlinear static and dynamic analyses for the evaluation of structural response of historical assets, were undertaken. The steps outlined in this article are important for input to these assessments
Harmonized approach to stress tests for critical infrastructures against natural hazards: STREST Reference Report 6
The STREST project developed a stress test methodology and a modelling approach to hazard, vulnerability, risk and resilience assessment of low-probability high-consequence events. The project contributes to the Sendai Framework for risk reduction, the improved protection of European and national critical infrastructures and the resilience of society to natural disasters.JRC.E.4-Safety and Security of Building
Variance reduction and signal-to-noise ratio: Reducing uncertainty in spectral ratios
This paper uses an unusually large dataset to study scatter in site-effect estimation, focusing on how the events that increase uncertainty can be removed from the dataset. Four hundred seventy-three weak motion earthquake records from the surface and bedrock of a 178-m-deep borehole in Aegion, Gulf of Corinth, Greece, are used to evaluate spectral ratios. A simple statistical tool, variance reduction (VR), is first used to identify two groups of events that lie closest and farthest from the average, which is considered here as the initial best estimate of the site response. The scatter in the original dataset is found to be due to the group of events with smallest VR. These events can be removed from the dataset in order to compute a more reliable site response. However, VR is not normally used to choose records for site-effect studies, and it cannot be applied to the usual small datasets available. The signal-to-noise ratio (SNR) is normally used to this end, for which reason we investigate whether SNR can be used to achieve similar results as VR. Signal-to-noise ratio is estimated using different definitions. Data selection based on SNR is then compared to that using VR in order to define an SNR-based criterion that discriminates against events that, according to VR, increase scatter. We find that defining the SNR of a surface record as the mean value over a frequency range around the resonant peak (here, 0.5–1.5 Hz) and using a cutoff value of 5 may be used in this case to exclude most events for which VR is small. This process is also applied to the downhole station, where we obtain similar results for a cutoff value of 3
Understanding the physics of kappa (κ): Insights from a downhole array
At high frequencies, the acceleration spectral amplitude decreases rapidly; this has been modelled with the spectral decay factor κ. Its site component, κ0, is used widely today in ground motion prediction and simulation, and numerous approaches have been proposed to compute it. In this study, we estimate κ for the EUROSEISTEST valley, a geologically complex and seismically active region with a permanent strong motion array consisting of 14 surface and 6 downhole stations. Site conditions range from soft sediments to hard rock. First, we use the classical approach to separate local and regional attenuation and measure κ0. Second, we take advantage of the existing knowledge of the geological profile and material properties to examine the correlation of κ0 with different site characterization parameters. κ0 correlates well with Vs30, as expected, indicating a strong effect from the geological structure in the upper 30 m. But it correlates equally well with the resonant frequency and depth-to-bedrock of the stations, which indicates strong effects from the entire sedimentary column, down to 400 m. Third, we use our results to improve our physical understanding of κ0. We propose a conceptual model of κ0 with Vs, comprising two new notions. On the one hand, and contrary to existing correlations, we observe that κ0 stabilizes for high Vs values. This may indicate the existence of regional values for hard rock κ0. If so, we propose that borehole measurements (almost never used up to now for κ0) may be useful in determining these values. On the other hand, we find that material damping, as expressed through travel times, may not suffice to account for the total κ0 measured at the surface. We propose that, apart from material damping, additional site attenuation may be caused by scattering from small-scale variability in the profile. If this is so, then geotechnical damping measurements may not suffice to infer the overall crustal attenuation under a site; but starting with a regional value (possibly from a borehole) and adding damping, we might define a lower bound for site-specific κ0. More precise estimates would necessitate seismological site instrumentation
Intelligent Metasurfaces with Continuously Tunable Local Surface Impedance for Multiple Reconfigurable Functions
Electromagnetic metasurfaces can be characterized as intelligent if they are
able to perform multiple tunable functions, with the desired response being
controlled by a computer influencing the individual electromagnetic properties
of each metasurface inclusion. In this paper, we present an example of an
intelligent metasurface which operates in the reflection mode in the microwave
frequency range. We numerically show that without changing the main body of the
metasurface we can achieve tunable perfect absorption and tunable anomalous
reflection. The tunability features can be implemented using mixed-signal
integrated circuits (ICs), which can independently vary both the resistance and
reactance, offering complete local control over the complex surface impedance.
The ICs are embedded in the unit cells by connecting two metal patches over a
thin grounded substrate and the reflection property of the intelligent
metasurface can be readily controlled by a computer. Our intelligent
metasurface can have significant influence on future space-time modulated
metasurfaces and a multitude of applications, such as beam steering, energy
harvesting, and communications.Comment: 10 pages, 8 figure
Seismic wave amplification: Basin geometry vs soil layering.
International audienceThe main purpose of the paper is to analyze seismic site effects in alluvial basins and to discuss the influence of the knowledge of the local geology on site amplification simulations. Wave amplification is due to a combined effect of impedance ratio between soil layers and surface wave propagation due to the limited extent of the basin. In this paper, we investigate the influence of the complexity of the soil layering (simplified or detailed layering) on site effects in both time and frequency domain. The analysis is performed by the Boundary Element Method. The European test site of Volvi (Greece) is considered and 2D amplification in the basin is investigated for various soil models. Seismic signals are computed in time domain for synthetic Ricker signals as well as actual measurements. They are analyzed in terms of amplification level as well as time duration lengthening (basin effects) for both SH and SV waves. These results show that the geometry of the basin has a very strong influence on seismic wave amplification in terms of both amplification level and time duration lengthening. The combined influence of geometry/layering of alluvial basins seems to be very important for the analysis of 2D (3D) site effects but a simplified analysis could sometimes be sufficient. In the case of Volvi European test site, this influence leads to (measured and computed) 2D amplification ratios far above 1D estimations from horizontal layering descriptions
- …
