4,186 research outputs found
Theories of behaviour change synthesised into a set of theoretical groupings: Introducing a thematic series on the Theoretical Domains Framework
Behaviour change is key to increasing the uptake of evidence into healthcare practice. Designing behaviour-change interventions first requires problem analysis, ideally informed by theory. Yet the large number of partly overlapping theories of behaviour makes it difficult to select the most appropriate theory. The need for an overarching theoretical framework of behaviour change was addressed in research in which 128 explanatory constructs from 33 theories of behaviour were identified and grouped. The resulting Theoretical Domains Framework (TDF) appears to be a helpful basis for investigating implementation problems. Research groups in several countries have conducted TDF-based studies. It seems timely to bring together the experience of these teams in a thematic series to demonstrate further applications and to report key developments. This overview article describes the TDF, provides a brief critique of the framework, and introduces this thematic series.
In a brief review to assess the extent of TDF-based research, we identified 133 papers that cite the framework. Of these, 17 used the TDF as the basis for empirical studies to explore health professionals’ behaviour. The identified papers provide evidence of the impact of the TDF on implementation research. Two major strengths of the framework are its theoretical coverage and its capacity to elicit beliefs that could signify key mediators of behaviour change. The TDF provides a useful conceptual basis for assessing implementation problems, designing interventions to enhance healthcare practice, and understanding behaviour-change processes. We discuss limitations and research challenges and introduce papers in this series
Novel mutations expand the clinical spectrum of DYNC1H1-associated spinal muscular atrophy
OBJECTIVE
To expand the clinical phenotype of autosomal dominant congenital spinal muscular atrophy with lower extremity predominance (SMA-LED) due to mutations in the dynein, cytoplasmic 1, heavy chain 1 (DYNC1H1) gene.
METHODS
Patients with a phenotype suggestive of a motor, non-length-dependent neuronopathy predominantly affecting the lower limbs were identified at participating neuromuscular centers and referred for targeted sequencing of DYNC1H1.
RESULTS
We report a cohort of 30 cases of SMA-LED from 16 families, carrying mutations in the tail and motor domains of DYNC1H1, including 10 novel mutations. These patients are characterized by congenital or childhood-onset lower limb wasting and weakness frequently associated with cognitive impairment. The clinical severity is variable, ranging from generalized arthrogryposis and inability to ambulate to exclusive and mild lower limb weakness. In many individuals with cognitive impairment (9/30 had cognitive impairment) who underwent brain MRI, there was an underlying structural malformation resulting in polymicrogyric appearance. The lower limb muscle MRI shows a distinctive pattern suggestive of denervation characterized by sparing and relative hypertrophy of the adductor longus and semitendinosus muscles at the thigh level, and diffuse involvement with relative sparing of the anterior-medial muscles at the calf level. Proximal muscle histopathology did not always show classic neurogenic features.
CONCLUSION
Our report expands the clinical spectrum of DYNC1H1-related SMA-LED to include generalized arthrogryposis. In addition, we report that the neurogenic peripheral pathology and the CNS neuronal migration defects are often associated, reinforcing the importance of DYNC1H1 in both central and peripheral neuronal functions
Mary's Powers of Imagination
One common response to the knowledge argument is the ability hypothesis. Proponents of the ability hypothesis accept that Mary learns what seeing red is like when she exits her black-and-white room, but they deny that the kind of knowledge she gains is propositional in nature. Rather, she acquires a cluster of abilities that she previously lacked, in particular, the abilities to recognize, remember, and imagine the color red. For proponents of the ability hypothesis, knowing what an experience is like simply consists in the possession of these abilities.
Criticisms of the ability hypothesis tend to focus on this last claim. Such critics tend to accept that Mary gains these abilities when she leaves the room, but they deny that such abilities constitute knowledge of what an experience is like. To my mind, however, this critical strategy grants too much. Focusing specifically on imaginative ability, I argue that Mary does not gain this ability when she leaves the room for she already had the ability to imagine red while she was inside it. Moreover, despite what some have thought, the ability hypothesis cannot be easily rescued by recasting it in terms of a more restrictive imaginative ability. My purpose here is not to take sides in the debate about physicalism, i.e., my criticism of the ability hypothesis is not offered in an attempt to defend the anti-physicalist conclusion of the knowledge argument. Rather, my purpose is to redeem the imagination from the misleading picture of it that discussion of the knowledge argument has fostered
Grounding, Analysis, and Russellian Monism
Few these days dispute that the knowledge argument demonstrates an epistemic gap between the physical facts and the facts about experience. It is much more contentious whether that epistemic gap can be used to demonstrate a metaphysical gap of a kind that is inconsistent with physicalism. In this paper I will explore two attempts to block the inference from an epistemic gap to a metaphysical gap – the first from the phenomenal concept strategy, the second from Russellian monism – and suggest how the proponent of the knowledge argument might respond to each of these challenges. In doing so, I will draw on recent discussions of grounding and essence in the metaphysics literature
Absence of system xc⁻ on immune cells invading the central nervous system alleviates experimental autoimmune encephalitis
Background: Multiple sclerosis (MS) is an autoimmune demyelinating disease that affects the central nervous system (CNS), leading to neurodegeneration and chronic disability. Accumulating evidence points to a key role for neuroinflammation, oxidative stress, and excitotoxicity in this degenerative process. System x(c)- or the cystine/glutamate antiporter could tie these pathological mechanisms together: its activity is enhanced by reactive oxygen species and inflammatory stimuli, and its enhancement might lead to the release of toxic amounts of glutamate, thereby triggering excitotoxicity and neurodegeneration.
Methods: Semi-quantitative Western blotting served to study protein expression of xCT, the specific subunit of system x(c)-, as well as of regulators of xCT transcription, in the normal appearing white matter (NAWM) of MS patients and in the CNS and spleen of mice exposed to experimental autoimmune encephalomyelitis (EAE), an accepted mouse model of MS. We next compared the clinical course of the EAE disease, the extent of demyelination, the infiltration of immune cells and microglial activation in xCT-knockout (xCT(-/-)) mice and irradiated mice reconstituted in xCT(-/-) bone marrow (BM), to their proper wild type (xCT(+/+)) controls.
Results: xCT protein expression levels were upregulated in the NAWM of MS patients and in the brain, spinal cord, and spleen of EAE mice. The pathways involved in this upregulation in NAWM of MS patients remain unresolved. Compared to xCT(+/+) mice, xCT(-/-) mice were equally susceptible to EAE, whereas mice transplanted with xCT(-/-) BM, and as such only exhibiting loss of xCT in their immune cells, were less susceptible to EAE. In none of the above-described conditions, demyelination, microglial activation, or infiltration of immune cells were affected.
Conclusions: Our findings demonstrate enhancement of xCT protein expression in MS pathology and suggest that system x(c)- on immune cells invading the CNS participates to EAE. Since a total loss of system x(c)- had no net beneficial effects, these results have important implications for targeting system x(c)- for treatment of MS
Continuity Culture: A Key Factor for Building Resilience and Sound Recovery Capabilities
This article investigates the extent to which Jordanian service organizations seek to establish continuity culture through testing, training, and updating of their business continuity plans. A survey strategy was adopted in this research. Primary and secondary data were used. Semistructured interviews were conducted with five senior managers from five large Jordanian service organizations registered with the Amman Stock Exchange. The selection of organizations was made on the basis of simple random sampling. Interviews targeted the headquarters only in order to obtain a homogenous sample. Three out of five organizations could be regarded as crisis prepared and have better chances for recovery. The other two organizations exhibited characteristics of standard practice that only emphasizes the recovery aspect of business continuity management (BCM), while paying less attention to establishing resilient cultures and embedding BCM. The findings reveal that the ability to recover following major incidents can be improved by embedding BCM in the culture of the organization and by making BCM an enterprise-wide process. This is one of few meticulous studies that have been undertaken in the Middle East and the first in Jordan to investigate the extent to which service organizations focus on embedding BCM in the organizational culture
Drug-microbiota interactions and treatment response: Relevance to rheumatoid arthritis
Knowledge about associations between changes in the structure and/or function of intestinal microbes (the microbiota) and the pathogenesis of various diseases is expanding. However, interactions between the intestinal microbiota and different pharmaceuticals and the impact of these on responses to treatment are less well studied. Several mechanisms are known by which drug-microbiota interactions can influence drug bioavailability, efficacy, and/or toxicity. This includes direct activation or inactivation of drugs by microbial enzymes which can enhance or reduce drug effectiveness. The extensive metabolic capabilities of the intestinal microbiota make it a hotspot for drug modification. However, drugs can also influence the microbiota profoundly and change the outcome of interactions with the host. Additionally, individual microbiota signatures are unique, leading to substantial variation in host responses to particular drugs. In this review, we describe several known and emerging examples of how drug-microbiota interactions influence the responses of patients to treatment for various diseases, including inflammatory bowel disease, type 2 diabetes and cancer. Focussing on rheumatoid arthritis (RA), a chronic inflammatory disease of the joints which has been linked with microbial dysbiosis, we propose mechanisms by which the intestinal microbiota may affect responses to treatment with methotrexate which are highly variable. Furthering our knowledge of this subject will eventually lead to the adoption of new treatment strategies incorporating microbiota signatures to predict or improve treatment outcomes
Ancient and modern DNA reveal dynamics of domestication and cross-continental dispersal of the dromedary
Dromedaries have been fundamental to the development of human societies in arid landscapes and for long-distance trade across hostile hot terrains for 3,000 y. Today they continue to be an important livestock resource in marginal agro-ecological zones. However, the history of dromedary domestication and the influence of ancient trading networks on their genetic structure have remained elusive. We combined ancient DNA sequences of wild and early-domesticated dromedary samples from arid regions with nuclear microsatellite and mitochondrial genotype information from 1,083 extant animals collected across the species’ range. We observe little phylogeographic signal in the modern population, indicative of extensive gene flow and virtually affecting all regions except East Africa, where dromedary populations have remained relatively isolated. In agreement with archaeological findings, we identify wild dromedaries from the southeast Arabian Peninsula among the founders of the domestic dromedary gene pool. Approximate Bayesian computations further support the “restocking from the wild” hypothesis, with an initial domestication followed by introgression from individuals from wild, now-extinct populations. Compared with other livestock, which show a long history of gene flow with their wild ancestors, we find a high initial diversity relative to the native distribution of the wild ancestor on the Arabian Peninsula and to the brief coexistence of early-domesticated and wild individuals. This study also demonstrates the potential to retrieve ancient DNA sequences from osseous remains excavated in hot and dry desert environments
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
- …
