581 research outputs found
Bargaining over perfect complements owned separately: with experimental test
This paper considers the situation in which two perfect complements belong to different owners. We calculate the Bayesian–Nash equilibrium in the mechanism of k + 1 − price bargaining with private value, and did experiment to test the theory
Pygmy Dipol Resonances as a Manifestation of the Structure of the Neutron-Rich Nuclei
Dipole excitations in neutron-rich nuclei below the neutron threshold are
investigated. The method is based on Hartree-Fock-Bogoliubov (HFB) and
Quasiparticle-Phonon Model (QPM) theory. Of our special interest are the
properties of the low-lying 1- Pygmy Resonance and the two-phonon
quadrupole-octupole 1- states in Sn-isotopes including exploratory
investigations for the experimentally unknown mass regions. In particular we
investigate the evolution of the dipole strength function with the neutron
excess. The use of HFB mean-field potentials and s.p. energies is found to
provide a reliable extrapolation into the region off stability.Comment: 8 pages, 3 figures, Proceedings of the International Conference on
Collective Motion in Nuclei Under Extreme Conditions (COMEX1), Paris, France,
10-13 June 200
Orbital M1 versus E2 strength in deformed nuclei: A new energy weighted sum rule
Within the unified model of Bohr and Mottelson we derive the following linear
energy weighted sum rule for low energy orbital 1 excitations in even-even
deformed nuclei S_{\rm LE}^{\rm lew} (M_1^{\rm orb}) \cong (6/5) \epsilon
(B(E2; 0^+_1 \rightarrow 2_1^+ K=0)/Z e^2^2) \mu^2_N with B(E2) the E2
strength for the transition from the ground state to the first excited state in
the ground state rotational band, the charge r.m.s. radius squared and
the binding energy per nucleon in the nuclear ground state. It is
shown that this energy weighted sum rule is in good agreement with available
experimental data. The sum rule is derived using a simple ansatz for the
intrinsic ground state wave function that predicts also high energy 1
strength at 2 carrying 50\% of the total moment of the
orbital M1 operator.Comment: REVTEX (3.0), 9 pages, RU924
Transition Rates between Mixed Symmetry States: First Measurement in 94Mo
The nucleus 94Mo was investigated using a powerful combination of
gamma-singles photon scattering experiments and gamma-gamma-coincidence studies
following the beta-decay of 94mTc. The data survey short-lived J^pi=1+,2+
states and include branching ratios, E2/M1 mixing ratios, lifetimes, and
transition strengths. The mixed-symmetry (MS) 1+ scissors mode and the 2+ MS
state are identified from M1 strengths. A gamma transition between MS states
was observed and its rate was measured. Nine M1 and E2 strengths involving MS
states agree with the O(6) limit of the interacting boson model-2 using the
proton boson E2 charge as the only free parameter.Comment: 9 pages, 3 PostScript figures included, ReVTeX, accepted for
publication in Physical Review Letters, tentatively scheduled for August 9,
199
Competing electric and magnetic excitations in backward electron scattering from heavy deformed nuclei
Important contributions to the cross sections of
low-lying orbital excitations are found in heavy deformed nuclei, arising
from the small energy separation between the two excitations with and 1, respectively. They are studied microscopically in QRPA using
DWBA. The accompanying response is negligible at small momentum transfer
but contributes substantially to the cross sections measured at for fm ( MeV)
and leads to a very good agreement with experiment. The electric response is of
longitudinal type for but becomes almost purely
transverse for larger backward angles. The transverse response
remains comparable with the response for fm
( MeV) and even dominant for MeV. This happens even at
large backward angles , where the dominance is
limited to the lower region.Comment: RevTeX, 19 pages, 8 figures included Accepted for publication in Phys
Rev
Strong fragmentation of low-energy electromagnetic excitation strength in Sn
Results of nuclear resonance fluorescence experiments on Sn are
reported. More than 50 transitions with MeV were
detected indicating a strong fragmentation of the electromagnetic excitation
strength. For the first time microscopic calculations making use of a complete
configuration space for low-lying states are performed in heavy odd-mass
spherical nuclei. The theoretical predictions are in good agreement with the
data. It is concluded that although the E1 transitions are the strongest ones
also M1 and E2 decays contribute substantially to the observed spectra. In
contrast to the neighboring even Sn, in Sn the
component of the two-phonon quintuplet built on top of
the 1/2 ground state is proved to be strongly fragmented.Comment: 4 pages, 3 figure
Charged pion form factor between Q^2=0.60 and 2.45 GeV^2. II. Determination of, and results for, the pion form factor
The charged pion form factor, Fpi(Q^2), is an important quantity which can be
used to advance our knowledge of hadronic structure. However, the extraction of
Fpi from data requires a model of the 1H(e,e'pi+)n reaction, and thus is
inherently model dependent. Therefore, a detailed description of the extraction
of the charged pion form factor from electroproduction data obtained recently
at Jefferson Lab is presented, with particular focus given to the dominant
uncertainties in this procedure. Results for Fpi are presented for
Q^2=0.60-2.45 GeV^2. Above Q^2=1.5 GeV^2, the Fpi values are systematically
below the monopole parameterization that describes the low Q^2 data used to
determine the pion charge radius. The pion form factor can be calculated in a
wide variety of theoretical approaches, and the experimental results are
compared to a number of calculations. This comparison is helpful in
understanding the role of soft versus hard contributions to hadronic structure
in the intermediate Q^2 regime.Comment: 18 pages, 11 figure
- …
