591 research outputs found

    The current progress of the ALICE Ring Imaging Cherenkov Detector

    Get PDF
    Recently, the last two modules (out of seven) of the ALICE High Momentum Particle Identification detector (HMPID) were assembled and tested. The full detector, after a pre-commissioning phase, has been installed in the experimental area, inside the ALICE solenoid, at the end of September 2006. In this paper we review the status of the ALICE/HMPID project and we present a summary of the series production of the CsI photo-cathodes. We describe the key features of the production procedure which ensures high quality photo-cathodes as well as the results of the quality assessment performed by means of a specially developed 2D scanner system able to produce a detailed map of the CsI photo-current over the entire photo-cathode surface. Finally we present our recent R&D efforts toward the development of a novel generation of imaging Cherenkov detectors with the aim to identify, in heavy ions collisions, hadrons up to 30 GeV/c.Comment: Presented at the Imaging-2006 Conference, Stockholm, Sweden, June 200

    Spin Physics at Compass

    Full text link
    COMPASS is a new fixed target experiment presently in operation at CERN. It has the goal to investigate hadron structure and hadron spectroscopy by using either muon or hadron beams. From measurements of various hadron asymmetries in polarized muon - nucleon scattering it will be possible to determine the contribution of the gluons to the nucleon spin. Main objective of the hadron program is the search of exotic states, and glueballs in particular. This physics programme is carried out with a two-stage magnetic spectrometer, with particle identification and calorimetry in both stages, which has started collecting physics data in 2002, and will run at the CERN SPS at least until 2010. Preliminary results from the 2002 run with a 160 GeV muon beam are presented for several physics channels under investigation.Comment: 12 pages, 7 figures. Invited paper at the 26th Course of the "International School of Nuclear Physics": Lepton Scattering and the Structure of Hadrons and Nuclei. Erice-Sicily: 16 - 24 September 2004. to be published on "Progress in Particle and Nuclear Physics

    Recognition of Cherenkov patterns in high multiplicity environments

    Get PDF
    An algorithm for the recognition of Cherenkov patterns based on the Hough Transform Method (HTM), modified for signals with intrinsic width in presence of background, is presented. The method basically consists in a mapping of the pad coordinate space directly to the Cherenkov angle parameter space with a crucial increase of performance in the treatment of different pattern shapes and amount of background. The method has been developed in the framework of the ALICE experiment at CERN for the analysis of data taken in the HMPID (High Momentum Particle IDentification) RICH detector prototype test beam

    Efficient ion blocking in gaseous detectors and its application to gas-avalanche photomultipliers sensitive in the visible-light range

    Get PDF
    A novel concept for ion blocking in gas-avalanche detectors was developed, comprising cascaded micro-hole electron multipliers with patterned electrodes for ion defocusing. This leads to ion blocking at the 10^{-4} level, in DC mode, in operation conditions adequate for TPCs and for gaseous photomultipliers. The concept was validated in a cascaded visible-sensitive gas avalanche photomultiplier operating at atmospheric pressure of Ar/CH_{4} (95/5) with a bi-alkali photocathode. While in previous works high gain, in excess of 10^{5}, was reached only in a pulse-gated cascaded-GEM gaseous photomultiplier, the present device yielded, for the first time, similar gain in DC mode. We describe shortly the physical processes involved in the charge transport within gaseous photomultipliers and the ion blocking method. We present results of ion backflow fraction and of electron multiplication in cascaded patterned-electrode gaseous photomultiplier with K-Cs-Sb, Na-K-Sb and Cs-Sb visible-sensitive photocathodes, operated in DC mode.Comment: Proceeding paper to 10-th International Conference On Instrumentation For Colliding Beam Physics, Budker Institute of Nuclear Physics, Novosibirsk, Russia, February 28 - March 5, 2008, Submitted to NIMA, 5 pages, 7 figure

    Ion-induced effects in GEM & GEM/MHSP gaseous photomultipliers for the UV and the visible spectral range

    Get PDF
    We report on the progress in the study of cascaded GEM and GEM/MHSP gas avalanche photomultipliers operating at atmospheric pressure, with CsI and bialkali photocathodes. They have single-photon sensitivity, ns time resolution and good localization properties. We summarize operational aspects and results, with the highlight of a high-gain stable gated operation of a visible-light device. Of particular importance are the results of a recent ion-backflow reduction study in different cascaded multipliers, affecting the detector's stability and the photocathode's liftime. We report on the significant progress in ion-blocking and provide first results on bialkali-photocathode aging under gas multiplication.Comment: 6 pages, 8 figure

    First observation of Cherenkov rings with a large area CsI-TGEM-based RICH prototype

    Full text link
    We have built a RICH detector prototype consisting of a liquid C6F14 radiator and six triple Thick Gaseous Electron Multipliers (TGEMs), each of them having an active area of 10x10 cm2. One triple TGEM has been placed behind the liquid radiator in order to detect the beam particles, whereas the other five have been positioned around the central one at a distance to collect the Cherenkov photons. The upstream electrode of each of the TGEM stacks has been coated with a 0.4 micron thick CsI layer. In this paper, we will present the results from a series of laboratory tests with this prototype carried out using UV light, 6 keV photons from 55Fe and electrons from 90Sr as well as recent results of tests with a beam of charged pions where for the first time Cherenkov Ring images have been successfully recorded with TGEM photodetectors. The achieved results prove the feasibility of building a large area Cherenkov detector consisting of a matrix of TGEMs.Comment: Presented at the International Conference NDIP-11, Lyon,July201

    Study of the Quantum Efficiency of CsI Photocathodes Exposed to Oxygen and Water Vapour

    Get PDF
    The operation of CsI photocathodes in gaseous detectors requires special attention to the purity of the applied gas mixtures.We have studied the influence of oxygen and water vapour contaminations on the performance of CsI photocathodes for theALICE HMPID RICH prototype. Measurements were done through comparison of Cherenkov rings obtained from beamtests. Increased levels of oxygen and water vapour did not show any effect on the performance. The results of this studyfound a direct application in the way of storing CsI photocathodes over long periods nad in particular in the shipment of theHMPID prototype from CERN to the STAR experiment at BNL. (Abstract only available,full text to follow

    Aging of large area CsI photocathodes for the ALICE HMPID prototypes

    Get PDF
    The ALICE HMPID RICH detector is equipped with CsI photocathodes in a MWPC for the detection of Cherenkov photons. The long term operational experience with large area CsI photocathodes will be described. The RICH prototypes have shown a very high stability of operation and performance, at a gain of 10 \5 and with rates up to 2x10 \4 cm-2 s-1. When exposure to air has been avoided, no degradation of the CsI quantum efficiency has been observed on photocathodes periodically exposed to test-beams over 7 years, corresponding to local integrated charge densities of ~ 1 mC cm-2. The results of limited exposures to oxygen and humidity will also be presented

    Performance of large area CsI-RICH prototypes for ALICE at LHC

    Get PDF
    We present the performances of large area CsI-RICH prototypes obtained in single particle events. The differential quantum efficiency of the photocathodes has been deduced from Cherenkov rings by means of two different procedures: a direct measurement with a thin NaF radiator and a Monte Carlo based estimation for a C6_6F14_{14} radiator. A factor of merit of 45 cm1^{-1} has been found for the typical detector configuration. Two angle reconstruction algorithms have been used and the different errors affecting the Cherenkov angle resolution have been estimated combining the analytical treatment and the Monte Carlo simulation. Also the dependence on radiator thickness, Cherenkov ring radius, chamber voltage and particle incidence angle has been studied
    corecore