301 research outputs found
OGLE-2005-BLG-071Lb, the Most Massive M-Dwarf Planetary Companion?
We combine all available information to constrain the nature of
OGLE-2005-BLG-071Lb, the second planet discovered by microlensing and the first
in a high-magnification event. These include photometric and astrometric
measurements from Hubble Space Telescope, as well as constraints from higher
order effects extracted from the ground-based light curve, such as microlens
parallax, planetary orbital motion and finite-source effects. Our primary
analysis leads to the conclusion that the host of Jovian planet
OGLE-2005-BLG-071Lb is an M dwarf in the foreground disk with mass M= 0.46 +/-
0.04 Msun, distance D_l = 3.3 +/- 0.4 kpc, and thick-disk kinematics v_LSR ~
103 km/s. From the best-fit model, the planet has mass M_p = 3.8 +/- 0.4 M_Jup,
lies at a projected separation r_perp = 3.6 +/- 0.2 AU from its host and so has
an equilibrium temperature of T ~ 55 K, i.e., similar to Neptune. A degenerate
model less favored by \Delta\chi^2 = 2.1 (or 2.2, depending on the sign of the
impact parameter) gives similar planetary mass M_p = 3.4 +/- 0.4 M_Jup with a
smaller projected separation, r_\perp = 2.1 +/- 0.1 AU, and higher equilibrium
temperature T ~ 71 K. These results from the primary analysis suggest that
OGLE-2005-BLG-071Lb is likely to be the most massive planet yet discovered that
is hosted by an M dwarf. However, the formation of such high-mass planetary
companions in the outer regions of M-dwarf planetary systems is predicted to be
unlikely within the core-accretion scenario. There are a number of caveats to
this primary analysis, which assumes (based on real but limited evidence) that
the unlensed light coincident with the source is actually due to the lens, that
is, the planetary host. However, these caveats could mostly be resolved by a
single astrometric measurement a few years after the event.Comment: 51 pages, 12 figures, 3 tables, Published in Ap
OGLE-2005-BLG-153: Microlensing Discovery and Characterization of A Very Low Mass Binary
The mass function and statistics of binaries provide important diagnostics of
the star formation process. Despite this importance, the mass function at low
masses remains poorly known due to observational difficulties caused by the
faintness of the objects. Here we report the microlensing discovery and
characterization of a binary lens composed of very low-mass stars just above
the hydrogen-burning limit. From the combined measurements of the Einstein
radius and microlens parallax, we measure the masses of the binary components
of and . This discovery
demonstrates that microlensing will provide a method to measure the mass
function of all Galactic populations of very low mass binaries that is
independent of the biases caused by the luminosity of the population.Comment: 6 pages, 3 figures, 1 tabl
Metaphors we die by? Geoengineering, metaphors and the argument from catastrophe
Geoeengineering the climate by reflecting sunlight or extracting carbon dioxide from the atmosphere has attracted increasing attention from natural scientists, social scientists, policy makers and the media. This article examines promotional discourse related to geoengineering from the 1980s to 2010. It asks in particular how this option for dealing with the problems posed by climate change were framed through the use of conceptual and discourse metaphors and whether one can argue that these are metaphors we ‘live by’ or metaphors we might ‘die by’. Findings show that an overarching argument from catastrophe was bolstered by three conceptual master-metaphors, namely The Planet is a body, The Planet is a machine and The planet is a patient/addict, linked to a variety of discourse metaphors, older conceptual metaphors and clichés. This metaphorical landscape began to shift while the article was being written and will have to be closely monitored in the future
Study of avalanche dynamics by seismic methods, image-processing techniques and numerical models
KAP1 targets actively transcribed genomic loci to exert pleomorphic effects on RNA polymerase II activity
KAP1 (KRAB-associated protein 1) is best known as a co-repressor responsible for inducing heterochromatin formation, notably at transposable elements. However, it has also been observed to bind the transcription start site of actively expressed genes. To address this paradox, we characterized the protein interactome of KAP1 in the human K562 erythro-leukaemia cell line. We found that the regulator can associate with a wide range of nucleic acid binding proteins, nucleosome remodellers, chromatin modifiers and other transcription modulators. We further determined that KAP1 is recruited at actively transcribed polymerase II promoters, where its depletion resulted in pleomorphic effects, whether expression of these genes was normally constitutive or inducible, consistent with the breadth of possible KAP1 interactors.
This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'
Increased cortical surface area and gyrification following long-term survival from early monocular enucleation
AbstractPurposeRetinoblastoma is typically diagnosed before 5 years of age and is often treated by enucleation (surgical removal) of the cancerous eye. Here, we sought to characterize morphological changes of the cortex following long-term survival from early monocular enucleation.MethodsNine adults with early right-eye enucleation (≤48 months of age) due to retinoblastoma were compared to 18 binocularly intact controls. Surface area, cortical thickness, and gyrification estimates were obtained from T1 weighted images and group differences were examined.ResultsEarly monocular enucleation was associated with increased surface area and/or gyrification in visual (i.e., V1, inferior temporal), auditory (i.e., supramarginal), and multisensory (i.e., superior temporal, inferior parietal, superior parietal) cortices compared with controls. Visual cortex increases were restricted to the right hemisphere contralateral to the remaining eye, consistent with previous subcortical data showing asymmetrical lateral geniculate nucleus volume following early monocular enucleation.ConclusionsAltered morphological development of visual, auditory, and multisensory regions occurs subsequent to long-time survival from early eye loss
Interferometric Observatories in Earth Orbit
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76217/1/AIAA-1728-623.pd
MOA-2010-BLG-523: "Failed Planet" = RS CVn Star
peer reviewedThe Galactic bulge source MOA-2010-BLG-523S exhibited short-term deviations from a standard microlensing light curve near the peak of an A [SUB]max[/SUB] ~ 265 high-magnification microlensing event. The deviations originally seemed consistent with expectations for a planetary companion to the principal lens. We combine long-term photometric monitoring with a previously published high-resolution spectrum taken near peak to demonstrate that this is an RS CVn variable, so that planetary microlensing is not required to explain the light-curve deviations. This is the first spectroscopically confirmed RS CVn star discovered in the Galactic bulge. Based on observations made with the European Southern Observatory telescopes, Program ID 85.B-0399(I)
A Cluster of Evolutionarily Recent KRAB Zinc Finger Proteins Protects Cancer Cells from Replicative Stress-Induced Inflammation.
Heterochromatin loss and genetic instability enhance cancer progression by favoring clonal diversity, yet uncontrolled replicative stress leads to mitotic catastrophe and inflammatory responses that promote immune rejection. KRAB domain-containing zinc finger proteins (KZFP) contribute to heterochromatin maintenance at transposable elements (TE). Here, we identified an association of upregulation of a cluster of primate-specific KZFPs with poor prognosis, increased copy-number alterations, and changes in the tumor microenvironment in diffuse large B-cell lymphoma (DLBCL). Depleting two of these KZFPs targeting evolutionarily recent TEs, ZNF587 and ZNF417, impaired the proliferation of cells derived from DLBCL and several other tumor types. ZNF587 and ZNF417 depletion led to heterochromatin redistribution, replicative stress, and cGAS-STING-mediated induction of an interferon/inflammatory response, which enhanced susceptibility to macrophage-mediated phagocytosis and increased surface expression of HLA-I, together with presentation of a neoimmunopeptidome. Thus, cancer cells can exploit KZFPs to dampen TE-originating surveillance mechanisms, which likely facilitates clonal expansion, diversification, and immune evasion.
Upregulation of a cluster of primate-specific KRAB zinc finger proteins in cancer cells prevents replicative stress and inflammation by regulating heterochromatin maintenance, which could facilitate the development of improved biomarkers and treatments
- …
