860 research outputs found
Identification of modifiers of alpha-synuclein inclusion in a C. elegans model by genome-wide RNAi
Genetic variation in the zebrafish
Although zebrafish was introduced as a laboratory model organism several decades ago and now serves as a primary model for developmental biology, there is only limited data on its genetic variation. An establishment of a dense polymorphism map becomes a requirement for effective linkage analysis and cloning approaches in zebrafish. By comparing ESTs to whole-genome shotgun data, we predicted >50,000 high-quality candidate SNPs covering the zebrafish genome with average resolution of 41 kbp. We experimentally validated ∼65% of a randomly sampled subset by genotyping 16 samples from seven commonly used zebrafish strains. The analysis reveals very high nucleotide diversity between zebrafish isolates. Even with the limited number of samples that we genotyped, zebrafish isolates revealed considerable interstrain variation, ranging from 7% (inbred) to 37% (wild-derived) of polymorphic sites being heterozygous. The increased proportion of polymorphic over monomorphic sites results in five times more frequent observation of a three allelic variant compared with human or mouse. Phylogenetic analysis shows that comparisons between even the least divergent strains used in our analysis may provide one informative marker approximately every 500 nucleotides. Furthermore, the number of haplotypes per locus is relatively large, reflecting independent establishment of the different lines from wild isolates. Finally, our results suggest the presence of prominent C-to-U and A-to-I RNA editing events in zebrafish. Overall, the levels and organization of genetic variation between and within commonly used zebrafish strains are markedly different from other laboratory model organisms, which may affect experimental design and interpretation
Precise targeted integration by a chimaeric transposase zinc-finger fusion protein
Transposons of the Tc1/mariner family have been used to integrate foreign DNA stably into the genome of a large variety of different cell types and organisms. Integration is at TA dinucleotides located essentially at random throughout the genome, potentially leading to insertional mutagenesis, inappropriate activation of nearby genes, or poor expression of the transgene. Here, we show that fusion of the zinc-finger DNA-binding domain of Zif268 to the C-terminus of ISY100 transposase leads to highly specific integration into TA dinucleotides positioned 6-17 bp to one side of a Zif268 binding site. We show that the specificity of targeting can be changed using Zif268 variants that bind to sequences from the HIV-1 promoter, and demonstrate a bacterial genetic screen that can be used to select for increased levels of targeted transposition. A TA dinucleotide flanked by two Zif268 binding sites was efficiently targeted by our transposase-Zif268 fusion, suggesting the possibility of designer ‘Z-transposases’ that could deliver transgenic cargoes to chosen genomic locations
<i>C-elegans</i> model identifies genetic modifiers of alpha-synuclein inclusion formation during aging
Inclusions in the brain containing alpha-synuclein are the pathological hallmark of Parkinson's disease, but how these inclusions are formed and how this links to disease is poorly understood. We have developed a <i>C-elegans</i> model that makes it possible to monitor, in living animals, the formation of alpha-synuclein inclusions. In worms of old age, inclusions contain aggregated alpha-synuclein, resembling a critical pathological feature. We used genome-wide RNA interference to identify processes involved in inclusion formation, and identified 80 genes that, when knocked down, resulted in a premature increase in the number of inclusions. Quality control and vesicle-trafficking genes expressed in the ER/Golgi complex and vesicular compartments were overrepresented, indicating a specific role for these processes in alpha-synuclein inclusion formation. Suppressors include aging-associated genes, such as sir-2.1/SIRT1 and lagr-1/LASS2. Altogether, our data suggest a link between alpha-synuclein inclusion formation and cellular aging, likely through an endomembrane-related mechanism. The processes and genes identified here present a framework for further study of the disease mechanism and provide candidate susceptibility genes and drug targets for Parkinson's disease and other alpha-synuclein related disorders
Shotgun Cloning of Transposon Insertions in the Genome of Caenorhabditis elegans
We present a strategy to identify and map large numbers of transposon insertions in
the genome of Caenorhabditis elegans. Our approach makes use of the mutator strain
mut-7, which has germline-transposition activity of the Tc1/mariner family of transposons,
a display protocol to detect new transposon insertions, and the availability of
the genomic sequence of C. elegans. From a pilot insertional mutagenesis screen, we
have obtained 351 new Tc1 transposons inserted in or near 219 predicted C. elegans
genes. The strategy presented provides an approach to isolate insertions of natural
transposable elements in many C. elegans genes and to create a large-scale collection
of C. elegans mutants
Hsmar1 transposition is sensitive to the topology of the transposon donor and the target
Hsmar1 is a member of the Tc1-mariner superfamily of DNA transposons. These elements mobilize within the genome of their host by a cut-and-paste mechanism. We have exploited the in vitro reaction provided by Hsmar1 to investigate the effect of DNA supercoiling on transposon integration. We found that the topology of both the transposon and the target affect integration. Relaxed transposons have an integration defect that can be partially restored in the presence of elevated levels of negatively supercoiled target DNA. Negatively supercoiled DNA is a better target than nicked or positively supercoiled DNA, suggesting that underwinding of the DNA helix promotes target interactions. Like other Tc1-mariner elements, Hsmar1 integrates into 5′-TA dinucleotides. The direct vicinity of the target TA provides little sequence specificity for target interactions. However, transposition within a plasmid substrate was not random and some TA dinucleotides were targeted preferentially. The distribution of intramolecular target sites was not affected by DNA topology
Identification of amino acids in HIV-2 integrase involved in site-specific hydrolysis and alcoholysis of viral DNA termini
The human immunodeficiency virus integrase (HIV IN) protein cleaves two nucleotides off the 3′ end of viral DNA and subsequently integrates the viral DNA into target DNA. IN exposes a specific phosphodiester bond near the viral DNA end to nucleophilic attack by water or other nucleophiles, such as glycerol or the 3′ hydroxyl group of the viral DNA molecule itself. Wild-type IN has a preference for water as the nucleophile; we here describe a class of IN mutants that preferentially use the 3′ hydroxyl group of viral DNA as nucleophile. The amino acids that are altered in this class of mutants map near the putative active-site residues Asp-116 and Glu-152. These results support a model in which multiple amino acid side-chains are involved in presentation of the (soluble) nucleophile. IN is probably active as an oligomeric complex, in which the subunits have non-equivalent roles; we here report that nucleophile selection is determined by the subunit that supplies the active site.</p
Identification of amino acids in HIV-2 integrase involved in site-specific hydrolysis and alcoholysis of viral DNA termini
The human immunodeficiency virus integrase (HIV IN) protein cleaves two nucleotides off the 3′ end of viral DNA and subsequently integrates the viral DNA into target DNA. IN exposes a specific phosphodiester bond near the viral DNA end to nucleophilic attack by water or other nucleophiles, such as glycerol or the 3′ hydroxyl group of the viral DNA molecule itself. Wild-type IN has a preference for water as the nucleophile; we here describe a class of IN mutants that preferentially use the 3′ hydroxyl group of viral DNA as nucleophile. The amino acids that are altered in this class of mutants map near the putative active-site residues Asp-116 and Glu-152. These results support a model in which multiple amino acid side-chains are involved in presentation of the (soluble) nucleophile. IN is probably active as an oligomeric complex, in which the subunits have non-equivalent roles; we here report that nucleophile selection is determined by the subunit that supplies the active site.</p
Solution conformations of early intermediates in Mos1 transposition
DNA transposases facilitate genome rearrangements by moving DNA transposons around and between genomes by a cut-and-paste mechanism. DNA transposition proceeds in an ordered series of nucleoprotein complexes that coordinate pairing and cleavage of the transposon ends and integration of the cleaved ends at a new genomic site. Transposition is initiated by transposase recognition of the inverted repeat sequences marking each transposon end. Using a combination of solution scattering and biochemical techniques, we have determined the solution conformations and stoichiometries of DNA-free Mos1 transposase and of the transposase bound to a single transposon end. We show that Mos1 transposase is an elongated homodimer in the absence of DNA and that the N-terminal 55 residues, containing the first helix-turn-helix motif, are required for dimerization. This arrangement is remarkably different from the compact, crossed architecture of the dimer in the Mos1 paired-end complex (PEC). The transposase remains elongated when bound to a single-transposon end in a pre-cleavage complex, and the DNA is bound predominantly to one transposase monomer. We propose that a conformational change in the single-end complex, involving rotation of one half of the transposase along with binding of a second transposon end, could facilitate PEC assembly
- …
