1,268 research outputs found
Native geometry and the dynamics of protein folding
In this paper we investigate the role of native geometry on the kinetics of
protein folding based on simple lattice models and Monte Carlo simulations.
Results obtained within the scope of the Miyazawa-Jernigan indicate the
existence of two dynamical folding regimes depending on the protein chain
length. For chains larger than 80 amino acids the folding performance is
sensitive to the native state's conformation. Smaller chains, with less than 80
amino acids, fold via two-state kinetics and exhibit a significant correlation
between the contact order parameter and the logarithmic folding times. In
particular, chains with N=48 amino acids were found to belong to two broad
classes of folding, characterized by different cooperativity, depending on the
contact order parameter. Preliminary results based on the G\={o} model show
that the effect of long range contact interaction strength in the folding
kinetics is largely dependent on the native state's geometry.Comment: Proceedings of the BIFI 2004 - I International Conference, Zaragoza
(Spain) Biology after the genome: a physical view. To appear in Biophysical
Chemistr
Electrochemical Aptamer-Based Sensors for Rapid Point-of-Use Monitoring of the Mycotoxin Ochratoxin A Directly in a Food Stream.
The ability to measure the concentration of specific small molecules continuously and in real-time in complex sample streams would impact many areas of agriculture, food safety, and food production. Monitoring for mycotoxin taint in real time during food processing, for example, could improve public health. Towards this end, we describe here an inexpensive electrochemical DNA-based sensor that supports real-time monitor of the mycotoxin ochratoxin A in a flowing stream of foodstuffs
Recoverable One-dimensional Encoding of Three-dimensional Protein Structures
Protein one-dimensional (1D) structures such as secondary structure and
contact number provide intuitive pictures to understand how the native
three-dimensional (3D) structure of a protein is encoded in the amino acid
sequence. However, it has not been clear whether a given set of 1D structures
contains sufficient information for recovering the underlying 3D structure.
Here we show that the 3D structure of a protein can be recovered from a set of
three types of 1D structures, namely, secondary structure, contact number and
residue-wise contact order which is introduced here for the first time. Using
simulated annealing molecular dynamics simulations, the structures satisfying
the given native 1D structural restraints were sought for 16 proteins of
various structural classes and of sizes ranging from 56 to 146 residues. By
selecting the structures best satisfying the restraints, all the proteins
showed a coordinate RMS deviation of less than 4\AA{} from the native
structure, and for most of them, the deviation was even less than 2\AA{}. The
present result opens a new possibility to protein structure prediction and our
understanding of the sequence-structure relationship.Comment: Corrected title. No Change In Content
Predictions of structural elements for the binding of Hin recombinase with the hix site of DNA
Molecular dynamics simulations were coupled with experimental data from biochemistry and genetics to generate a theoretical structure for the binding domain of Hin recombinase complexed with the hix site of DNA. The theoretical model explains the observed sequence specificity of Hin recombinase and leads to a number of testable predictions concerning altered sequence selectivity for various mutants of protein and DNA. Combining molecular dynamics simulations with constraints based on current knowledge of protein structure leads to a theoretical structure of the binding domain of Hin recombinase with the hix site of DNA. The model offers a mechanistic explanation of the presently known characteristics of Hin and predicts the effects of specific mutations of both protein and DNA. The predictions can be tested by currently feasible experiments that should lead to refinements in and improvements on the current theoretical model. Because current experimental and theoretical methods are all limited to providing only partial information about protein-DNA interactions, we believe that this approach of basing molecular simulations on experimental knowledge and using the results of these simulations to design new, more precise experimental tests will be of general utility. These results provide additional evidence for the generality of the helix-turn-helix motif in DNA recognition and stabilization of proteins on DNA
Activity modulation and allosteric control of a scaffolded DNAzyme using a dynamic DNA nanostructure.
Recognition of the fundamental importance of allosteric regulation in biology dates back to not long after its discovery in the 1960s. Our ability to rationally engineer this potentially useful property into normally non-allosteric catalysts, however, remains limited. In response we report a DNA nanotechnology-enabled approach for introducing allostery into catalytic nucleic acids. Specifically, we have grafted one or two copies of a peroxidase-like DNAzyme, hemin-bound G-quadruplex (hemin-G), onto a DNA tetrahedral nanostructure in such a manner as to cause them to interact, modulating their catalytic activity. We achieve allosteric regulation of these catalysts by incorporating dynamically responsive oligonucleotides that respond to specific "effector" molecules (complementary oligonucleotides or small molecules), altering the spacing between the catalytic sites and thus regulating their activity. This designable approach thus enables subtle allosteric modulation in DNAzymes that is potentially of use for nanomedicine and nanomachines
Allosterically Tunable, DNA-Based Switches Triggered by Heavy Metals
Here we demonstrate the rational design of allosterically controllable, metal-ion-triggered molecular switches. Specifically, we designed DNA sequences that adopt two low energy conformations, one of which does not bind to the target ion and the other of which contains mismatch sites serving as specific recognition elements for mercury(II) or silver(I) ions. Both switches contain multiple metal binding sites and thus exhibit homotropic allosteric (cooperative) responses. As heterotropic allosteric effectors we employ single-stranded DNA sequences that either stabilize or destabilize the nonbinding state, enabling dynamic range tuning over several orders of magnitude. The ability to rationally introduce these effects into target-responsive switches could be of value in improving the functionality of DNA-based nanomachines
Mechanical Stretching of Proteins: Calmodulin and Titin
Mechanical unfolding of several domains of calmodulin and titin is studied
using a Go-like model with a realistic contact map and Lennard-Jones contact
interactions. It is shown that this simple model captures the experimentally
observed difference between the two proteins: titin is a spring that is tough
and strong whereas calmodulin acts like a weak spring with featureless
force-displacement curves. The difference is related to the dominance of the
alpha secondary structures in the native structure of calmodulin. The tandem
arrangements of calmodulin unwind simultaneously in each domain whereas the
domains in titin unravel in a serial fashion. The sequences of contact events
during unraveling are correlated with the contact order, i.e. with the
separation between contact making amino acids along the backbone in the native
state. Temperature is found to affect stretching in a profound way.Comment: To be published in a special bio-issue of Physica A; 14 figure
Cooperativity and the origins of rapid, single-exponential kinetics in protein folding
The folding of naturally occurring, single domain proteins is usually
well-described as a simple, single exponential process lacking significant
trapped states. Here we further explore the hypothesis that the smooth energy
landscape this implies, and the rapid kinetics it engenders, arises due to the
extraordinary thermodynamic cooperativity of protein folding. Studying
Miyazawa-Jernigan lattice polymers we find that, even under conditions where
the folding energy landscape is relatively optimized (designed sequences
folding at their temperature of maximum folding rate), the folding of
protein-like heteropolymers is accelerated when their thermodynamic
cooperativity enhanced by enhancing the non-additivity of their energy
potentials. At lower temperatures, where kinetic traps presumably play a more
significant role in defining folding rates, we observe still greater
cooperativity-induced acceleration. Consistent with these observations, we find
that the folding kinetics of our computational models more closely approximate
single-exponential behavior as their cooperativity approaches optimal levels.
These observations suggest that the rapid folding of naturally occurring
proteins is, at least in part, consequences of their remarkably cooperative
folding
Sequencing of folding events in Go-like proteins
We have studied folding mechanisms of three small globular proteins: crambin
(CRN), chymotrypsin inhibitor 2 (CI2) and the fyn Src Homology 3 domain (SH3)
which are modelled by a Go-like Hamiltonian with the Lennard-Jones
interactions. It is shown that folding is dominated by a well-defined
sequencing of events as determined by establishment of particular contacts. The
order of events depends primarily on the geometry of the native state.
Variations in temperature, coupling strengths and viscosity affect the
sequencing scenarios to a rather small extent. The sequencing is strongly
correlated with the distance of the contacting aminoacids along the sequence.
Thus -helices get established first. Crambin is found to behave like a
single-route folder, whereas in CI2 and SH3 the folding trajectories are more
diversified. The folding scenarios for CI2 and SH3 are consistent with
experimental studies of their transition states.Comment: REVTeX, 12 pages, 11 EPS figures, J. Chem. Phys (in press
How native state topology affects the folding of Dihydrofolate Reductase and Interleukin-1beta
The overall structure of the transition state and intermediate ensembles
experimentally observed for Dihydrofolate Reductase and Interleukin-1beta can
be obtained utilizing simplified models which have almost no energetic
frustration. The predictive power of these models suggest that, even for these
very large proteins with completely different folding mechanisms and functions,
real protein sequences are sufficiently well designed and much of the
structural heterogeneity observed in the intermediates and the transition state
ensembles is determined by topological effects.Comment: Proc. Natl. Acad. Sci. USA, in press (11 pages, 4 color PS figures)
Higher resolution PS files can be found at
http://www-physics.ucsd.edu/~cecilia/pub_list.htm
- …
