1,897 research outputs found
Innovative approaches to the study of social phenotypes in neurodevelopmental disorders: an introduction to the research topic
R01 HD033470 - NICHD NIH HH
Assessing the prosody of minimally to nonverbal children with autism
A procedure for assessing basic prosodic perception and
production abilities of minimally to nonverbal children and
adolescents with autism spectrum disorder is described (AP:
Assessment of Prosody). The procedure consists of three
sections: an optional primer phase, a learning phase, and an
assessment phase. It includes the assessment of both the
perception of basic pitch accent structure distinctions (low
versus high) as well as elicits expressive productions of these
contrasts. The goal of the procedure is to evaluate the extent to
which this population can perceive and produce prosodic
distinctions. The overarching aim is to create a pre and post
assessment to quantify prosodic competence and performance
of minimally to nonverbal children and adolescents who are
eligible for music-motor based intervention therapies (i.e.
AMMT: Auditory Motor Mapping Therapy). Current and
future versions of the assessment are discussed.Published versio
Onset of solid-state mantle convection and mixing during magma ocean solidification
©2017. American Geophysical UnionThe energy sources involved in the early stages of the formation of terrestrial bodies can induce partial or even complete melting of the mantle, leading to the emergence of magma oceans. The fractional crystallization of a magma ocean can cause the formation of a compositional layering that can play a fundamental role for the subsequent long‐term dynamics of the interior and for the evolution of geochemical reservoirs. In order to assess to what extent primordial compositional heterogeneities generated by magma ocean solidification can be preserved, we investigate the solidification of a whole‐mantle Martian magma ocean, and in particular the conditions that allow solid‐state convection to start mixing the mantle before solidification is completed. To this end, we performed 2‐D numerical simulations in a cylindrical geometry. We treat the liquid magma ocean in a parameterized way while we self‐consistently solve the conservation equations of thermochemical convection in the growing solid cumulates accounting for pressure‐, temperature‐, and, where it applies, melt‐dependent viscosity. By testing the effects of different cooling rates and convective vigor, we show that for a lifetime of the liquid magma ocean of 1 Myr or longer, the onset of solid‐state convection prior to complete mantle crystallization is likely and that a significant part of the compositional heterogeneities generated by fractionation can be erased by efficient mantle mixing. We discuss the consequences of our findings in relation to the formation and evolution of compositional reservoirs on Mars and on the other terrestrial bodies of the solar system.DFG, 276817549, Kristallisation des irdischen Magmaozeans: Thermo- und Geodynami
Contributions to the Study of Dynamic Absorbers, a Case Study
Dynamic absorbers are used to reduce torsional vibrations. This paper studies the effect of a dynamic absorber attached to a mechanical system formed of three reduced masses which are acted on by one, two or three order x harmonics of a disruptive force
Present-day Mars' seismicity predicted from 3-D thermal evolution models of interior dynamics
©2018. American Geophysical UnionThe Interior Exploration using Seismic Investigations, Geodesy and Heat Transport mission, to be launched in 2018, will perform a comprehensive geophysical investigation of Mars in situ. The Seismic Experiment for Interior Structure package aims to detect global and regional seismic events and in turn offer constraints on core size, crustal thickness, and core, mantle, and crustal composition. In this study, we estimate the present‐day amount and distribution of seismicity using 3‐D numerical thermal evolution models of Mars, taking into account contributions from convective stresses as well as from stresses associated with cooling and planetary contraction. Defining the seismogenic lithosphere by an isotherm and assuming two end‐member cases of 573 K and the 1073 K, we determine the seismogenic lithosphere thickness. Assuming a seismic efficiency between 0.025 and 1, this thickness is used to estimate the total annual seismic moment budget, and our models show values between 5.7 × 1016 and 3.9 × 1019 Nm
How large are present-day heat flux variations across the surface of Mars?
©2016. American Geophysical UnionThe first in situ Martian heat flux measurement to be carried out by the InSight Discovery‐class mission will provide an important baseline to constrain the present‐day heat budget of the planet and, in turn, the thermochemical evolution of its interior. In this study, we estimate the magnitude of surface heat flux heterogeneities in order to assess how the heat flux at the InSight landing site relates to the average heat flux of Mars. To this end, we model the thermal evolution of Mars in a 3‐D spherical geometry and investigate the resulting surface spatial variations of heat flux at the present day. Our models assume a fixed crust with a variable thickness as inferred from gravity and topography data and with radiogenic heat sources as obtained from gamma ray measurements of the surface. We test several mantle parameters and show that the present‐day surface heat flux pattern is dominated by the imposed crustal structure. The largest surface heat flux peak‐to peak variations lie between 17.2 and 49.9 mW m−2, with the highest values being associated with the occurrence of prominent mantle plumes. However, strong spatial variations introduced by such plumes remain narrowly confined to a few geographical regions and are unlikely to bias the InSight heat flux measurement. We estimated that the average surface heat flux varies between 23.2 and 27.3 mW m−2, while at the InSight location it lies between 18.8 and 24.2 mW m−2. In most models, elastic lithosphere thickness values exceed 250 km at the north pole, while the south pole values lie well above 110 km
The habitability of a stagnant-lid Earth
Plate tectonics is a fundamental component for the habitability of the Earth.
Yet whether it is a recurrent feature of terrestrial bodies orbiting other
stars or unique to the Earth is unknown. The stagnant lid may rather be the
most common tectonic expression on such bodies. To understand whether a
stagnant-lid planet can be habitable, i.e. host liquid water at its surface, we
model the thermal evolution of the mantle, volcanic outgassing of HO and
CO, and resulting climate of an Earth-like planet lacking plate tectonics.
We used a 1D model of parameterized convection to simulate the evolution of
melt generation and the build-up of an atmosphere of HO and CO over 4.5
Gyr. We then employed a 1D radiative-convective atmosphere model to calculate
the global mean atmospheric temperature and the boundaries of the habitable
zone (HZ). The evolution of the interior is characterized by the initial
production of a large amount of partial melt accompanied by a rapid outgassing
of HO and CO. At 1 au, the obtained temperatures generally allow for
liquid water on the surface nearly over the entire evolution. While the outer
edge of the HZ is mostly influenced by the amount of outgassed CO, the
inner edge presents a more complex behaviour that is dependent on the partial
pressures of both gases. At 1 au, the stagnant-lid planet considered would be
regarded as habitable. The width of the HZ at the end of the evolution, albeit
influenced by the amount of outgassed CO, can vary in a non-monotonic way
depending on the extent of the outgassed HO reservoir. Our results suggest
that stagnant-lid planets can be habitable over geological timescales and that
joint modelling of interior evolution, volcanic outgassing, and accompanying
climate is necessary to robustly characterize planetary habitability
Mercury's low‐degree geoid and topography controlled by insolation‐driven elastic deformation
©2015. American Geophysical UnionMercury experiences an uneven insolation that leads to significant latitudinal and longitudinal variations of its surface temperature. These variations, which are predominantly of spherical harmonic degrees 2 and 4, propagate to depth, imposing a long‐wavelength thermal perturbation throughout the mantle. We computed the accompanying density distribution and used it to calculate the mechanical and gravitational response of a spherical elastic shell overlying a quasi‐hydrostatic mantle. We then compared the resulting geoid and surface deformation at degrees 2 and 4 with Mercury's geoid and topography derived from the MErcury, Surface, Space ENvironment, GEochemistry, and Ranging spacecraft. More than 95% of the data can be accounted for if the thickness of the elastic lithosphere were between 110 and 180 km when the thermal anomaly was imposed. The obtained elastic thickness implies that Mercury became locked into its present 3:2 spin orbit resonance later than about 1 Gyr after planetary formation
- …
