327 research outputs found
Mobilizing the Metropolis
The Port Authority of New York and New Jersey has morphed in ways that would be unrecognizable to its founders. Its mission evolved from improving rail freight to building motor vehicle crossings, airports, office towers, and industrial parks and taking control of a failing commuter rail line. In its early years, the agency was often viewed with admiration; however as it drew up plans, negotiated to take control of airfields and marine terminals, and constructed large bridges and tunnels, the Port Authority became the object of less favorable attention. It was attacked as a “super-government” that must be reined in, while the mayors of New York and Newark argued that it should be broken up with its pieces given to local governments for their own use.
Despite its criticisms and travails, for over half a century the Port Authority overcame hurdles that had frustrated other public and private efforts, built the world's longest suspension bridge, and took a leading role in creating an organization to reduce traffic delays in the New York-New Jersey region. How did the Port Authority achieve these successes? And what lessons does its history offer to other cities and regions in the United States and beyond? In a time when public agencies are often condemned as inefficient and corrupt, this history should provide some positive lessons for governmental officials and social reformers.
In 2021, the Port Authority marked its 100th birthday. Its history reveals a struggle between the public and private sectors, the challenges of balancing democratic accountability and efficiency, and the tension between regional and local needs. From selected Port Authority successes and failures, Philip Mark Plotch and Jen Nelles produce a significant and engaging account of a powerful governmental entity that offers durable lessons on collaboration, leadership, and the challenge of overcoming complex political challenges in modern America
Comparative structural and functional analysis of Bunyavirus and Arenavirus cap-snatching Endonucleases
Segmented negative strand RNA viruses of the arena-, bunya- and orthomyxovirus families uniquely carry out viral mRNA transcription by the cap-snatching mechanism. This involves cleavage of host mRNAs close to their capped 5′ end by an endonuclease (EN) domain located in the N-terminal region of the viral polymerase. We present the structure of the cap-snatching EN of Hantaan virus, a bunyavirus belonging to hantavirus genus. Hantaan EN has an active site configuration, including a metal co-ordinating histidine, and nuclease activity similar to the previously reported La Crosse virus and Influenza virus ENs (orthobunyavirus and orthomyxovirus respectively), but is more active in cleaving a double stranded RNA substrate. In contrast, Lassa arenavirus EN has only acidic metal co-ordinating residues. We present three high resolution structures of Lassa virus EN with different bound ion configurations and show in comparative biophysical and biochemical experiments with Hantaan, La Crosse and influenza ENs that the isolated Lassa EN is essentially inactive. The results are discussed in the light of EN activation mechanisms revealed by recent structures of full-length influenza virus polymerase
DNA intercalator stimulates influenza transcription and virus replication
Influenza A virus uses its host transcription machinery to facilitate viral RNA synthesis, an event that is associated with cellular RNA polymerase II (RNAPII). In this study, various RNAPII transcription inhibitors were used to investigate the effect of RNAPII phosphorylation status on viral RNA transcription. A low concentration of DNA intercalators, such as actinomycin D (ActD), was found to stimulate viral polymerase activity and virus replication. This effect was not observed in cells treated with RNAPII kinase inhibitors. In addition, the loss of RNAPIIa in infected cells was due to the shift of nonphosphorylated RNAPII (RNAPIIa) to hyperphosphorylated RNAPII (RNAPIIo)
Diketo acids inhibit the cap-snatching endonuclease of several Bunyavirales
Several fatal bunyavirus infections lack specific treatment. Here, we show that diketo acids engage a panel of bunyavirus cap-snatching endonucleases, inhibit their catalytic activity and reduce viral replication of a taxonomic representative in vitro. Specifically, the non-salt form of L-742,001 and its derivatives exhibited EC50 values between 5.6 to 6.9 μM against a recombinant BUNV-mCherry virus. Structural analysis and molecular docking simulations identified traits of both the class of chemical entities and the viral target that could help the design of novel, more potent molecules for the development of pan-bunyavirus antivirals
In vivo transfer of barley stripe mosaic hordeivirus ribonucleotides to the 5' terminus of maize stripe tenuivirus RNAs
Functional Analysis of Conserved Motifs in Influenza Virus PB1 Protein
The influenza virus RNA polymerase complex is a heterotrimer composed of the PB1, PB2, and PA subunits. PB1, the catalytic core and structural backbone of the polymerase, possesses four highly conserved amino acid motifs that are present among all viral RNA-dependent RNA polymerases. A previous study demonstrated the importance of several of these conserved amino acids in PB1 for influenza polymerase activity through mutational analysis. However, a small number of viruses isolated in nature possesses non-consensus amino acids in one of the four motifs, most of which have not been tested for their replicative ability. Here, we assessed the transcription/replication activities of 25 selected PB1 mutations found in natural isolates by using minireplicon assays in human and avian cells. Most of the mutations tested significantly reduced polymerase activity. One exception was mutation K480R, observed in several pandemic (H1N1) 2009 viruses, which slightly increased polymerase activity relative to wild-type. However, in the background of the pandemic A/California/04/2009 (H1N1) virus, this mutation did not affect virus titers in cell culture. Our results further demonstrate the functional importance of the four conserved PB1 motifs in influenza virus transcription/replication. The finding of natural isolates with non-consensus PB1 motifs that are nonfunctional in minireplicon assays suggests compensatory mutations and/or mixed infections which may have ‘rescued’ the inactive PB1 protein
The N-Terminal Domain of the Arenavirus L Protein Is an RNA Endonuclease Essential in mRNA Transcription
Arenaviridae synthesize viral mRNAs using short capped primers presumably acquired from cellular transcripts by a ‘cap-snatching’ mechanism. Here, we report the crystal structure and functional characterization of the N-terminal 196 residues (NL1) of the L protein from the prototypic arenavirus: lymphocytic choriomeningitis virus. The NL1 domain is able to bind and cleave RNA. The 2.13 Å resolution crystal structure of NL1 reveals a type II endonuclease α/β architecture similar to the N-terminal end of the influenza virus PA protein. Superimposition of both structures, mutagenesis and reverse genetics studies reveal a unique spatial arrangement of key active site residues related to the PD…(D/E)XK type II endonuclease signature sequence. We show that this endonuclease domain is conserved and active across the virus families Arenaviridae, Bunyaviridae and Orthomyxoviridae and propose that the arenavirus NL1 domain is the Arenaviridae cap-snatching endonuclease
The human H5N1 influenza A virus polymerase complex is active in vitro over a broad range of temperatures, in contrast to the WSN complex, and this property can be attributed to the PB2 subunit
Influenza A virus (IAV) replicates in the upper respiratory tract of humans at 33 °C and in the intestinal tract of birds at close to 41 °C. The viral RNA polymerase complex comprises three subunits (PA, PB1 and PB2) and plays an important role in host adaptation. We therefore developed an in vitro system to examine the temperature sensitivity of IAV RNA polymerase complexes from different origins. Complexes were prepared from human lung epithelial cells (A549) using a novel adenoviral expression system. Affinity-purified complexes were generated that contained either all three subunits (PA/PB1/PB2) from the A/Viet/1203/04 H5N1 virus (H/H/H) or the A/WSN/33 H1N1 strain (W/W/W). We also prepared chimeric complexes in which the PB2 subunit was exchanged (H/H/W, W/W/H) or substituted with an avian PB2 from the A/chicken/Nanchang/3-120/01 H3N2 strain (W/W/N). All complexes were functional in transcription, cap-binding and endonucleolytic activity. Complexes containing the H5N1 or Nanchang PB2 protein retained transcriptional activity over a broad temperature range (30–42 °C). In contrast, complexes containing the WSN PB2 protein lost activity at elevated temperatures (39 °C or higher). The E627K mutation in the avian PB2 was not required for this effect. Finally, the avian PB2 subunit was shown to confer enhanced stability to the WSN 3P complex. These results show that PB2 plays an important role in regulating the temperature optimum for IAV RNA polymerase activity, possibly due to effects on the functional stability of the 3P complex
The N-terminal region of the PA subunit of the RNA polymerase of influenza A/HongKong/156/97 (H5N1) influences promoter binding.
BACKGROUND: The RNA polymerase of influenza virus is a heterotrimeric complex of PB1, PB2 and PA subunits which cooperate in the transcription and replication of the viral genome. Previous research has shown that the N-terminal region of the PA subunit of influenza A/WSN/33 (H1N1) virus is involved in promoter binding. METHODOLOGY/PRINCIPAL FINDINGS: Here we extend our studies of the influenza RNA polymerase to that of influenza strains A/HongKong/156/97 (H5N1) and A/Vietnam/1194/04 (H5N1). Both H5N1 strains, originally isolated from patients in 1997 and 2004, showed significantly higher polymerase activity compared with two classical human strains, A/WSN/33 (H1N1) and A/NT/60/68 (H3N2) in vitro. This increased polymerase activity correlated with enhanced promoter binding. The N-terminal region of the PA subunit was the major determinant of this enhanced promoter activity. CONCLUSIONS/SIGNIFICANCE: Overall we suggest that the N-terminal region of the PA subunit of two recent H5N1 strains can influence promoter binding and we speculate this may be a factor in their virulence
- …
