125 research outputs found

    Ground-Based Gamma-Ray Astronomy at Energies Above 10 TeV: Searching for Galactic PeV Cosmic-Ray Accelerators

    Full text link
    The origin of Galactic CRs up the knee energy remains unanswered and provides strong motivation for the study of gamma-ray sources at energies above 10 TeV. We discuss recent results from ground-based gamma-ray Cherenkov imaging systems at these energies as well as future observational efforts in this direction. The exciting results of H.E.S.S. give clues as to the nature of Galactic CR accelerators, and suggest that there is a population of Galactic gamma-ray sources with emission extending beyond 10 TeV. A dedicated system of Cherenkov imaging telescopes optimised for higher energies appears to be a promising way to study the multi-TeV gamma-ray sky.Comment: Presented at the conference 'Physics At The End Of The Galactic Cosmic Ray Spectrum' Aspen (April 2005) see http://www.cosmic-ray.org/conf/index.html (8 pages, 6 figures

    On the application of differences in intrinsic fluctuations of Cherenkov light images for separation of air showers

    Full text link
    The sensitivity of ground-based imaging atmospheric Cherenkov gamma-ray observatories depends critically on the primary particle identification methods which are used to retain photon-initiated events and suppress the spurious background produced by cosmic rays. We suggest a new discrimination technique which utilizes differences in the fluctuations of the light intensity in the images of showers initiated by photons and those initiated by protons or heavier nuclei. The database of simulated events for the proposed VERITAS observatory has been used to evaluate the efficiency of the new technique. Analysis has been performed for both a single VERITAS imaging telescope, and a system of these telescopes. We demonstrate that a discrimination efficiency of > 1.5 - 2.0 can be achieved in addition to traditional background rejection methods based on image shape parameters.Comment: 17 pages, 9 figures, accepted for publucation in Astropart. Phy

    Numerical analysis of electromagnetic cascades in emulsion chambers

    Get PDF
    A new calculational scheme of the Monte Carlo method assigned for the investigation of the development of high and extremely high energy electromagnetic cascades (EMC) in the matter was elaborated. The scheme was applied to the analysis of angular and radial distributions of EMC electrons in the atmosphere. By means of this scheme the EMC development in dense medium is investigated and some preliminary data are presented on the behavior of EMC in emulsion chambers. The results of more detailed theoretical analysis of the EMC development in emulsion chambers are discussed

    ALTAI: Computational code for the simulations of TeV air showers as observed with the ground-based imaging atmospheric Cherenkov telescopes

    Full text link
    Ground-based atmospheric Cherenkov telescopes are proven to be effective instruments for observations of very high energy (VHE) gamma-radiation from celestial objects. For effective use of such technique one needs detailed Monte Carlo simulations of gamma-ray- and proton/nuclei-induced air showers in Earth atmosphere. Here we discuss in detail the algorithms used in the numerical code ALTAI developed particularly for the simulations of Cherenkov light emission from air showers of energy below 50 TeV. The specific scheme of sampling the charged particle transport in the atmosphere allows the performance of very fast and accurate simulations used for interpretation of the VHE gamma-ray observations.Comment: 11 pages, 4 figures, Nuclear Instruments & Methods in Physics Research (Section A), in pres

    The electromagnetic component of albedo from superhigh energy cascades in dense media

    Get PDF
    Albedo from cascades induced in iron by high energy gamma quanta were Monte Carlo simulated. Thereafter the albedo electromagnetic component from proton induced cascades were calculated analytically. The calculations showed that the albedo electromagnetic component increases more rapidly than the nuclear active component and will dominate at sufficiently high energies

    Characteristics of air showers created by extremely high energy gamma-rays

    Get PDF
    The technique of adjoint cascade equations has been applied to calculate the properties of extremely high energy gamma-rays in the energy range 10^18--10^22 eV with taking into account the LPM effect and interactions of gamma-rays with the geomagnetic field. Such characteristics are analysed as the electron and muon contents at the observation level, the electron cascade curves, the lateral distribution functions of photoproduced muons.Comment: 36 pages, 19 figures, submitted to J.Phys.G: Nucl.Part.Phy

    On a possible photon origin of the most-energetic AGASA events

    Full text link
    In this work the ultra high energy cosmic ray events recorded by the AGASA experiment are analysed. With detailed simulations of the extensive air showers initiated by photons, the probabilities are determined of the photonic origin of the 6 AGASA events for which the muon densities were measured and the reconstructed energies exceeded 10^20 eV. On this basis a new, preliminary upper limit on the photon fraction in cosmic rays above 10^20 eV is derived and compared to the predictions of exemplary top-down cosmic-ray origin models.Comment: 3 pages, 1 figure, 2 tables; presented at XIII ISVHECRI, Pylos, Greec

    Characteristics of geomagnetic cascading of ultra-high energy photons at the southern and northern sites of the Pierre Auger Observatory

    Get PDF
    Cosmic-ray photons above 10^19 eV can convert in the geomagnetic field and initiate a preshower, i.e. a particle cascade before entering the atmosphere. We compare the preshower characteristics at the southern and northern sites of the Pierre Auger Observatory. In addition to a shift of the preshower patterns on the sky due to the different pointing of the local magnetic field vectors, the fact that the northern Auger site is closer to the geomagnetic pole results in a different energy dependence of the preshower effect: photon conversion can start at smaller energies, but large conversion probabilitites (>90%) are reached for the whole sky at higher energies compared to the southern Auger site. We show how the complementary preshower features at the two sites can be used to search for ultra-high energy photons among cosmic rays. In particular, the different preshower characteristics at the northern Auger site may provide an elegant and unambiguous confirmation if a photon signal is detected at the southern site.Comment: 25 pages, 14 figures, minor changes, conclusions unchanged, Appendix A replaced, accepted by Astroparticle Physic

    The unidentified TeV source (TeVJ2032+4130) and surrounding field: Final HEGRA IACT-System results

    Get PDF
    The unidentified TeV source in Cygnus is now confirmed by follow-up observations from 2002 with the HEGRA stereoscopic system of Cherenkov Telescopes. Using all data (1999 to 2002) we confirm this new source as steady in flux over the four years of data taking, extended with radius 6.2 arcmin (+-1.2 arcmin (stat) +-0.9 arcmin (sys)) and exhibiting a hard spectrum with photon index -1.9. It is located in the direction of the dense OB stellar association, Cygnus OB2. Its integral flux above energies E>1 TeV amounts to \~5% of the Crab assuming a Gaussian profile for the intrinsic source morphology. There is no obvious counterpart at radio, optical nor X-ray energies, leaving TeVJ2032+4130 presently unidentified. Observational parameters of this source are updated here and some astrophysical discussion is provided. Also included are upper limits for a number of other interesting sources in the FoV, including the famous microquasar Cygnus X-3.Comment: 7 pages, 3 figures. Accepted for publication in Astronomy & Astrophysic

    On the Potential of the Imaging Atmospheric Cherenkov Technique for Study of the Mass Composition of Primary Cosmic Radiation in the Energy Region above 30 TeV

    Get PDF
    We suggest a new approach to study the cosmis ray (CR) mass composition in the energy region from 30 TeV/nucleus up to the "knee" region, i.e. up to a few PeV/nucleus, using an array of imaging atmospheric Cherenkov telescopes (IACTs) of a special architecture. This array consists of telescopes with a relatively small mirror size (~10 square meters) separated from each other by large distances (~500 meters) and equipped by multichannel cameras with a modest pixel size (0.3-0.5 degree) and a sufficiently large viewing angle (6-7 degree). Compared to traditional IACT systems (like HEGRA, HESS or VERITAS) the IACT array considered here could provide a very large detection area (several square kilometers or more). At the same time, it allows an accurate measurement of the energy of CR induced air showers (the energy resolution ranges within 25-35%) and an effective separation of air showers created by different nuclei. Particularly, it is possible to enrich air showers belonging to the nucleus group assigned for selection up to ~90% purity at a detection efficiency of 15-20% of such showers.Comment: 28 pages, 12 figures, accepted for publication in Nucl. Instr. Met
    corecore