1,119 research outputs found
Legacy effects in linked ecological- soil-geomorphic systems of drylands
A legacy effect refers to the impacts that previous conditions have on current processes or properties. Legacies have been recognized by many disciplines, from physiology and ecology to anthropology and geology. Within the context of climatic change, ecological legacies in drylands (eg vegetative patterns) result from feedbacks between biotic, soil, and geomorphic processes that operate at multiple spatial and temporal scales. Legacy effects depend on (1) the magnitude of the original phenomenon, (2) the time since the occurrence of the phenomenon, and (3) the sensitivity of the ecologicalsoilgeomorphic system to change. Here we present a conceptual framework for legacy effects at short-term (days to months), medium-term (years to decades), and long-term (centuries to millennia) timescales, which reveals the ubiquity of such effects in drylands across research disciplines
Conservation of soil organic carbon, biodiversity and the provision of other ecosystem services along climatic gradients in West Africa
Terrestrial carbon resources are major drivers of
development in West Africa. The distribution of these resources
co-varies with ecosystem type and rainfall along a
strong Northeast-Southwest climatic gradient. Soil organic
carbon, a strong indicator of soil quality, has been severely
depleted in some areas by human activities, which leads to
issues of soil erosion and desertification, but this trend can
be altered with appropriate management. There is significant
potential to enhance existing soil carbon stores in West
Africa, with benefits at the global and local scale, for atmospheric
CO2 mitigation as well as supporting and provisioning
ecosystem services. Three key factors impacting
carbon stocks are addressed in this review: climate, biotic
factors, and human activities. Climate risks must be considered
in a framework of global change, especially in West
Africa, where landscape managers have few resources available
to adapt to climatic perturbations. Among biotic factors,
biodiversity conservation paired with carbon conservation
may provide a pathway to sustainable development, and
biodiversity conservation is also a global priority with local
benefits for ecosystem resilience, biomass productivity,
and provisioning services such as foodstuffs. Finally, human
management has largely been responsible for reduced
carbon stocks, but this trend can be reversed through the implementation
of appropriate carbon conservation strategies in
the agricultural sector, as shown by multiple studies. Owing
to the strong regional climatic gradient, country-level initiatives will need to consider carbon sequestration approaches
for multiple ecosystem types. Given the diversity of environments,
global policies must be adapted and strategies developed
at the national or sub-national levels to improve carbon
storage above and belowground. Initiatives of this sort must
act locally at farmer scale, and focus on ecosystem services
rather than on carbon sequestration solely
The (234)U neutron capture cross section measurement at the n_TOF facility
The neutron capture cross-section of (234)U has been measured for energies from thermal up to the keV region in the neutron time-of-flight facility n_TOF, based on a spallation source located at CERN. A 4 pi BaF(2) array composed of 40 crystals, placed at a distance of 184.9 m from the neutron source, was employed as a total absorption calorimeter (TAC) for detection of the prompt gamma-ray cascade from capture events in the sample. This text describes the experimental setup, all necessary steps followed during the data analysis procedure. Results are presented in the form of R-matrix resonance parameters from fits with the SAMMY code and compared to the evaluated data of ENDF in the relevant energy region, indicating the good performance of the n_TOF facility and the TAC
Towards the high-accuracy determination of the 238U fission cross section at the threshold region at CERN - N-TOF
The 238U fission cross section is an international standard beyond 2 MeV where the fission plateau starts. However, due to its importance in fission reactors, this cross-section should be very accurately known also in the threshold region below 2 MeV. The 238U fission cross section has been measured relative to the 235U fission cross section at CERN - n-TOF with different detection systems. These datasets have been collected and suitably combined to increase the counting statistics in the threshold region from about 300 keV up to 3 MeV. The results are compared with other experimental data, evaluated libraries, and the IAEA standards
Measurements of high-energy neutron-induced fission of (nat)Pb and (209)Bi
This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly citedThe CERN Neutron Time-Of-Flight (n_TOF) facility is well suited to measure low cross sections as those of neutron-induced fission in subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors and a fragment coincidence method that allows us to identify the fission events. The present experiment provides first results for neutron-induced fission up to 1 GeV. Good agreement is found with previous experimental data below 200 MeV. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross sections is close to 1 GeV
Measurement of the (90,91,92,93,94,96)Zr(n,gamma) and (139)La(n,gamma) cross sections at n_TOF
Open AccessNeutron capture cross sections of Zr and La isotopes have important implications in the field of nuclear astrophysics as well as in the nuclear technology. In particular the Zr isotopes play a key role for the determination of the neutron density in the He burning zone of the Red Giant star, while the (139)La is important to monitor the s-process abundances from Ba up to Ph. Zr is also largely used as structural materials of traditional and advanced nuclear reactors. The nuclear resonance parameters and the cross section of (90,91,92,93,94,96)Zr and (139)La have been measured at the n_TOF facility at CERN. Based on these data the capture resonance strength and the Maxwellian-averaged cross section were calculated
BCR-ABL induces the expression of Skp2 through the PI3K pathway to promote p27Kip1 degradation and proliferation of chronic myelogenous leukemia cells
Chronic myelogenous leukemia (CML) is characterized by the expression of the BCR-ABL tyrosine kinase, which results in increased cell proliferation and inhibition of apoptosis. In this study, we show in both BCR-ABL cells (Mo7e-p210 and BaF/3-p210) and primary CML CD34+ cells that STI571 inhibition of BCR-ABL tyrosine kinase activity results in a G(1) cell cycle arrest mediated by the PI3K pathway. This arrest is associated with a nuclear accumulation of p27(Kip1) and down-regulation of cyclins D and E. As a result, there is a reduction of the cyclin E/Cdk2 kinase activity and of the retinoblastoma protein phosphorylation. By quantitative reverse transcription-PCR we show that BCR-ABL/PI3K regulates the expression of p27(Kip1) at the level of transcription. We further show that BCR-ABL also regulates p27(Kip1) protein levels by increasing its degradation by the proteasome. This degradation depends on the ubiquitinylation of p27(Kip1) by Skp2-containing SFC complexes: silencing the expression of Skp2 with a small interfering RNA results in the accumulation of p27(Kip1). We also demonstrate that BCR-ABL cells show transcriptional up-regulation of Skp2. Finally, expression of a p27(Kip1) mutant unable of being recognized by Skp2 results in inhibition of proliferation of BCR-ABL cells, indicating that the degradation of p27(Kip1) contributes to the pathogenesis of CML. In conclusion, these results suggest that BCR-ABL regulates cell cycle in CML cells at least in part by inducing proteasome-mediated degradation of the cell cycle inhibitor p27(Kip1) and provide a rationale for the use of inhibitors of the proteasome in patients with BCR-ABL leukemias
New measurement of neutron capture resonances of 209Bi
The neutron capture cross section of Bi209 has been measured at the CERN n
TOF facility by employing the pulse-height-weighting technique. Improvements
over previous measurements are mainly because of an optimized detection system,
which led to a practically negligible neutron sensitivity. Additional
experimental sources of systematic error, such as the electronic threshold in
the detectors, summing of gamma-rays, internal electron conversion, and the
isomeric state in bismuth, have been taken into account. Gamma-ray absorption
effects inside the sample have been corrected by employing a nonpolynomial
weighting function. Because Bi209 is the last stable isotope in the reaction
path of the stellar s-process, the Maxwellian averaged capture cross section is
important for the recycling of the reaction flow by alpha-decays. In the
relevant stellar range of thermal energies between kT=5 and 8 keV our new
capture rate is about 16% higher than the presently accepted value used for
nucleosynthesis calculations. At this low temperature an important part of the
heavy Pb-Bi isotopes are supposed to be synthesized by the s-process in the He
shells of low mass, thermally pulsing asymptotic giant branch stars. With the
improved set of cross sections we obtain an s-process fraction of 19(3)% of the
solar bismuth abundance, resulting in an r-process residual of 81(3)%. The
present (n,gamma) cross-section measurement is also of relevance for the design
of accelerator driven systems based on a liquid metal Pb/Bi spallation target.Comment: 10 pages, 5figures, recently published in Phys. Rev.
- …
