1,215 research outputs found

    Heat shock proteins in health and disease: therapeutic targets or therapeutic agents?

    Get PDF
    For many years, heat shock or stress proteins have been regarded as intracellular molecules that have a range of housekeeping and cytoprotective functions, only being released into the extracellular environment in pathological situations such as necrotic cell death. However, evidence is now accumulating to indicate that, under certain circumstances, these proteins can be released from cells in the absence of cellular necrosis, and that extracellular heat shock proteins have a range of immunoregulatory activities. The capacity of heat shock proteins to induce pro-inflammatory responses, together with the phylogenetic similarity between prokaryotic and eukaryotic heat shock proteins, has led to the proposition that these proteins provide a link between infection and autoimmune disease. Indeed, both elevated levels of antibodies to heat shock proteins and an enhanced immune reactivity to heat shock proteins have been noted in a variety of pathogenic disease states. However, further evaluation of heat shock protein reactivity in autoimmune disease and after transplantation has shown that, rather than promoting disease, reactivity to self-heat shock proteins can downregulate the disease process. It might be that self-reactivity to heat shock proteins is a physiological response that regulates the development and progression of pro-inflammatory immunity to these ubiquitously expressed molecules. The evolving evidence that heat shock proteins are present in the extracellular environment, that reactivity to heat shock proteins does not necessarily reflect adverse, pro-inflammatory responses and that the promotion of reactivity to self-heat shock proteins can downregulate pathogenic processes all suggest a potential role for heat shock proteins as therapeutic agents, rather than as therapeutic targets

    Stimulation of hCG protein and mRNA in first trimester villous cytotrophoblast cells in vitro by glycodelin A

    Get PDF
    Aim: Human chorionic gonadotropin (hCG) is produced by fetal trophoblast cells and secreted into maternal circulation mainly in the first trimester of pregnancy. Another glycoprotein, glycodelin A, is one of the main products of the maternal decidua during this period. The purpose of this study was to investigate the effect of glycodelin A on hCG release by isolated cytotrophoblast cells in vitro. Methods: Cytotrophoblast cells were prepared from human first trimester placenta and incubated with varying concentrations of glycodelin A. Supernatants were assayed for hCG protein concentrations, and quantification of beta hCG mRNA was carried out by RT-PCR. Expression of hCG was analysed in stimulated trophoblast cells and in unstimulated controls by immunocytochemistry. Results: Glycodelin A induces a dose-dependent increase of hCG production. An increase of hCG expression was measured at 100 and 200 mu g/mL glycodelin-A treatment in trophoblast cell culture by TaqMan assay on mRNA level. We found a moderate staining of hCG in control trophoblast cells, whereas a strong hCG staining was seen in glycodelin A-treated trophoblast cells. Conclusions: HCG is a marker for the differentiation process of trophoblast cells. Our results suggest that glycodelin A secreted by the decidualized endometrium is involved in the regulation of hormones produced by the trophoblast

    Effect of 50 Hz Electromagnetic Fields on the Induction of Heat-Shock Protein Gene Expression in Human Leukocytes

    Get PDF
    Although evidence is controversial, exposure to environmental power-frequency magnetic fields is of public concern. Cells respond to some abnormal physiological conditions by producing cytoprotective heat-shock (or stress) proteins. In this study, we determined whether exposure to power-frequency magnetic fields in the range 0–100 μT rms either alone or concomitant with mild heating induced heat-shock protein gene expression in human leukocytes, and we compared this response to that induced by heat alone. Samples of human peripheral blood were simultaneously exposed to a range of magnetic-field amplitudes using a regimen that was designed to allow field effects to be distinguished from possible artifacts due to the position of the samples in the exposure system. Power-frequency magnetic-field exposure for 4 h at 37°C had no detectable effect on expression of the genes encoding HSP27, HSP70A or HSP70B, as determined using reverse transcriptase-PCR, whereas 2 h at 42°C elicited 10-, 5- and 12-fold increases, respectively, in the expression of these genes. Gene expression in cells exposed to power-frequency magnetic fields at 40°C was not increased compared to cells incubated at 40°C without field exposure. These findings and the extant literature suggest that power-frequency electromagnetic fields are not a universal stressor, in contrast to physical agents such as heat

    Influence of tumors on protective anti-tumor immunity and the effects of irradiation

    Get PDF
    Innate and adaptive immunity play important roles in the development and progression of cancer and it is becoming apparent that tumours can influence the induction of potentially protective responses in a number of ways. The prevalence of immunoregulatory T cell populations in the circulation and tumours of patients with cancer is increased, and the presence of these cells appears to present a major barrier to the induction of tumour immunity. One aspect of tumour-mediated immunoregulation which has received comparatively little attention is that which is directed towards natural killer (NK) cells, although evidence that the phenotype and function of NK cell populations are modified in patients with cancer is accumulating.Although the precise mechanisms underlying these localised and systemic immunoregulatory effects remain unclear, tumour-derived factors appear, in part at least, to be involved. The effects could be manifested by an altered function and/or via an influence on the migratory properties of individual cell subsets. A better insight into endogenous immunoregulatory mechanisms and the capacity of tumours to modify the phenotype and function of innate and adaptive immune cells might assist the development of new immunotherapeutic approaches and improve the management of patients with cancer.This article reviews current knowledge relating to the influence of tumours on protective anti-tumour immunity and considers the potential influence that radiation-induced effects might have on the prevalence, phenotype and function of innate and adaptive immune cells in patients with cancer

    Breast cancer diagnosis using a hybrid genetic algorithm for feature selection based on mutual information

    Get PDF
    Feature Selection is the process of selecting a subset of relevant features (i.e. predictors) for use in the construction of predictive models. This paper proposes a hybrid feature selection approach to breast cancer diagnosis which combines a Genetic Algorithm (GA) with Mutual Information (MI) for selecting the best combination of cancer predictors, with maximal discriminative capability. The selected features are then input into a classifier to predict whether a patient has breast cancer. Using a publicly available breast cancer dataset, experiments were performed to evaluate the performance of the Genetic Algorithm based on the Mutual Information approach with two different machine learning classifiers, namely the k-Nearest Neighbor (KNN), and Support vector machine (SVM), each tuned using different distance measures and kernel functions, respectively. The results revealed that the proposed hybrid approach is highly accurate for predicting breast cancer, and it is very promising for predicting other cancers using clinical data

    Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective

    Get PDF
    Many heat shock proteins (HSPs) are essential to survival as a consequence of their role as molecular chaperones, and play a critical role in maintaining cellular proteostasis by integrating the fundamental processes of protein folding and degradation. HSPs are arguably among the most prominent classes of proteins that have been broadly linked to many human disorders, with changes in their expression profile and/or intracellular/extracellular location now being described as contributing to the pathogenesis of a number of different diseases. Although the concept was initially controversial, it is now widely accepted that HSPs have additional biological functions over and above their role in proteostasis (so-called ‘protein moonlighting’). Most importantly, these new insights are enlightening our understanding of biological processes in health and disease, and revealing novel and exciting therapeutic opportunities. This theme issue draws on therapeutic insights from established research on HSPs in cancer and other non-communicable disorders, with an emphasis on how the intracellular function of HSPs contrasts with their extracellular properties and function, and interrogates their potential diagnostic and therapeutic value to the prevention, management and treatment of chronic diseases

    PROCEE: a PROstate Cancer Evaluation and Education serious game for African Caribbean men

    Get PDF
    Purpose – Prostate cancer is the most common cancer diagnosed in men in the UK. Black men are in a higher prostate cancer risk group possibly due to inherent genetic factors. The purpose of this paper is to introduce PROstate Cancer Evaluation and Education (PROCEE), an innovative serious game aimed at providing prostate cancer information and risk evaluation to black African-Caribbean men. Design/methodology/approach – PROCEE has been carefully co-designed with prostate cancer experts, prostate cancer patients and members of the black African-Caribbean community in order to ensure that it meets the real needs and expectations of the target audience. Findings – During the co-design process, the users defined an easy to use and entertaining game which can effectively raise awareness, inform users about prostate cancer and their risk, and encourage symptomatic men to seek medical attention in a timely manner. Originality/value – During focus group evaluations, users embraced the game and emphasised that it can potentially have a positive impact on changing user behaviour among high risk men who are experiencing symptoms and who are reluctant to visit their doctor

    Membrane Hsp70 — a novel target for the isolation of circulating tumor cells after epithelial-to-mesenchymal transition

    Get PDF
    The presence of circulating tumor cells (CTCs) in the peripheral blood is a pre-requisite for progression, invasion, and metastatic spread of cancer. Consequently, the enumeration and molecular characterization of CTCs from the peripheral blood of patients with solid tumors before, during and after treatment serves as a valuable tool for categorizing disease, evaluating prognosis and for predicting and monitoring therapeutic responsiveness. Many of the techniques for isolating CTCs are based on the expression of epithelial cell surface adhesion molecule (EpCAM, CD326) on tumor cells. However, the transition of adherent epithelial cells to migratory mesenchymal cells (epithelial-to-mesenchymal transition, EMT)—an essential element of the metastatic process—is frequently associated with a loss of expression of epithelial cell markers, including EpCAM. A highly relevant proportion of mesenchymal CTCs cannot therefore be isolated using techniques that are based on the “capture” of cells expressing EpCAM. Herein, we provide evidence that a monoclonal antibody (mAb) directed against a membrane-bound form of Hsp70 (mHsp70)—cmHsp70.1—can be used for the isolation of viable CTCs from peripheral blood of tumor patients of different entities in a more quantitative manner. In contrast to EpCAM, the expression of mHsp70 remains stably upregulated on migratory, mesenchymal CTCs, metastases and cells that have been triggered to undergo EMT. Therefore, we propose that approaches for isolating CTCs based on the capture of cells that express mHsp70 using the cmHsp70.1 mAb are superior to those based on EpCAM expression

    Science restructuring raises serious issues

    Get PDF
    ​Reprinted with permission from Public Sector 1992, vol. 15(1): 18–20
    corecore