1,123 research outputs found

    Continuum coupled cluster expansion

    Full text link
    We review the basics of the coupled-cluster expansion formalism for numerical solutions of the many-body problem, and we outline the principles of an approach directed towards an adequate inclusion of continuum effects in the associated single-energy spectrum. We illustrate our findings by considering the simple case of a single-particle quantum mechanics problem.Comment: 16 pages, 1 figur

    Suppression of left-handed properties in disordered metamaterials

    Full text link
    We study the effect of disorder on the effective magnetic response of composite left-handed metamaterials and their specific properties such as negative refraction. We show that relatively weak disorder in the split-ring resonators can reduce and even completely eliminate the frequency domain where the composite material demonstrates the left-handed properties. We introduce the concept of the order parameter to describe novel physics of this effect.Comment: 4 pages, 2 figure

    Superconducting quantum phase transitions tuned by magnetic impurity and magnetic field in ultrathin a-Pb films

    Full text link
    Superconducting quantum phase transitions tuned by disorder (d), paramagnetic impurity (MI) and perpendicular magnetic field (B) have been studied in homogeneously disordered ultrathin a-Pb films. The MI-tuned transition is characterized by progressive suppression of the critical temperature to zero and a continuous transition to a weakly insulating normal state with increasing MI density. In all important aspects, the d-tuned transition closely resembles the MI-tuned transition and both appear to be fermionic in nature. The B-tuned transition is qualitatively different and probably bosonic. In the critical region it exhibits transport behavior that suggests a B-induced mesoscale phase separation and presence of Cooper pairing in the insulating state.Comment: 17 pages, 4 figure

    Asymptotic behavior in the scalar field theory

    Full text link
    An asymptotic solution of the system of Schwinger-Dyson equations for four-dimensional Euclidean scalar field theory with interaction λ2(ϕϕ)2\frac{\lambda}{2}(\phi^*\phi)^2 is obtained. For λ>λcr=16π2\lambda>\lambda_{cr}=16\pi^2 the two-particle amplitude has the pathology-free asymptotic behavior at large momenta. For λ<λcr\lambda<\lambda_{cr} the amplitude possesses Landau-type singularity.Comment: 16 pages; journal version; references adde

    Supergravity Duals to the Noncommutative N=4 SYM theory in the Infinite Momentum Frame

    Full text link
    In this work the construction of supergravity duals to the noncommutative N=4{\cal N}=4 SYM theory in the infinite momentum frame but with constant momentum density is attempted. In the absence of the content of noncommutativity, it has been known for some time that the previous AdS5/CFT4AdS_{5}/CFT_{4} correspondence should be replaced by the K5/CFT4K_{5}/CFT_{4} (with K(p+2)K_{(p+2)} denoting the generalized Kaigorodov spacetime) correspondence with the pp-wave propagating on the BPS brane worldvolume. Interestingly enough, putting together the two contents, i.e., the introduction of noncommutativity and at the same time that of the pp-wave along the brane worldvolume, leads to quite nontrivial consequences such as the emergence of ``time-space'' noncommutativity in addition to the ``space-space'' noncommutativity in the manifold on which the dual gauge theory is defined. Taking the gravity decoupling limit, it has been realized that for small uu, the solutions all reduce to K5×S5K_{5}\times S^5 geometry confirming our expectation that the IR dynamics of the dual gauge theory should be unaffected by the noncommutativity while as uu\to \infty, the solutions start to deviate significantly from K5×S5K_{5}\times S^5 limit indicating that the UV dynamics of the dual gauge theory would be heavily distorted by the effect of noncommutativity.Comment: 21 pages, Latex, One expression changed, a reference added, to appear in Phys. Rev.

    Aichelburg-Sexl boost of an isolated source in general relativity

    Get PDF
    A study of the Aichelburg--Sexl boost of the Schwarzschild field is described in which the emphasis is placed on the field (curvature tensor) with the metric playing a secondary role. This is motivated by a description of the Coulomb field of a charged particle viewed by an observer whose speed relative to the charge approaches the speed of light. Our approach is exemplified by carrying out an Aichelburg-- Sexl type boost on the Weyl vacuum gravitational field due to an isolated axially symmetric source. Detailed calculations of the boosts transverse and parallel to the symmetry axis are given and the results, which differ significantly, are discussed.Comment: 25 pages, LateX2

    SO(4) Theory of Competition between Triplet Superconductivity and Antiferromagnetism in Bechgaard Salts

    Full text link
    Motivated by recent experiments with Bechgaard salts, we investigate the competition between antiferromagnetism and triplet superconductivity in quasi one-dimensional electron systems. We unify the two orders in an SO(4) symmetric framework, and demonstrate the existence of such symmetry in one-dimensional Luttinger liquids. SO(4) symmetry, which strongly constrains the phase diagram, can explain coexistence regions between antiferromagnetic, superconducting, and normal phases, as observed in (TMTSF)2_2PF6_6. We predict a sharp neutron scattering resonance in superconducting samples.Comment: 5 pages, 3 figures; Added discussion of applicability of SO(4) symmetry for strongly anisotropic Fermi liquids; Added reference

    Translational Symmetry Breaking in the Superconducting State of the Cuprates: Analysis of the Quasiparticle Density of States

    Full text link
    Motivated by the recent STM experiments of J.E. Hoffman et.al. and C. Howald et.al., we study the effects of weak translational symmetry breaking on the quasiparticle spectrum of a d-wave superconductor. We develop a general formalism to discuss periodic charge order, as well as quasiparticle scattering off localized defects. We argue that the STM experiments in Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta} cannot be explained using a simple charge density wave order parameter, but are consistent with the presence of a periodic modulation in the electron hopping or pairing amplitude. We review the effects of randomness and pinning of the charge order and compare it to the impurity scattering of quasiparticles. We also discuss implications of weak translational symmetry breaking for ARPES experiments.Comment: 12 pages, 9 figs; (v2) minor corrections to formalism, discussions of dispersion, structure factors and sum rules added; (v3) discussion of space-dependent normalization added. To be published in PR

    Pre-Hawking Radiation from a Collapsing Shell

    Full text link
    We investigate the effect of induced massive radiation given off during the time of collapse of a massive spherically symmetric domain wall in the context of the functional Schr\"odinger formalism. Here we find that the introduction of mass suppresses the occupation number in the infrared regime of the induced radiation during the collapse. The suppression factor is found to be given by eβme^{-\beta m}, which is in agreement with the expected Planckian distribution of induced radiation. Thus a massive collapsing domain wall will radiate mostly (if not exclusively) massless scalar fields, making it difficult for the domain wall to shed any global quantum numbers and evaporate before the horizon is formed.Comment: 10 pages, 3 figures. We updated the acknowledgments as well as added a statement clarifying that we are following the methods first laid out in Phys. Rev. D 76, 024005 (2007

    The vacuum bubbles in de Sitter background and black hole pair creation

    Full text link
    We study the possible types of the nucleation of vacuum bubbles. We classify vacuum bubbles in de Sitter background and present some numerical solutions. The thin-wall approximation is employed to obtain the nucleation rate and the radius of vacuum bubbles. With careful analysis we confirm that Parke's formula is also applicable to the large true vacuum bubbles. The nucleation of the false vacuum bubble in de Sitter background is also evaluated. The tunneling process in the potential with degenerate vacua is analyzed as the limiting cases of the large true vacuum bubble and false vacuum bubble. Next, we consider the pair creation of black holes in the background of bubble solutions. We obtain static bubble wall solutions of junction equation with black hole pair. The masses of created black holes are uniquely determined by the cosmological constant and surface tension on the wall. Finally, we obtain the rate of pair creation of black holes.Comment: 3 figures, minor including errors and typos corrected, and refs. adde
    corecore