387 research outputs found

    A search for ^(70)Zn anomalies in meteorites

    Get PDF
    No ^(70)Zn isotopic anomalies have been detected in primitive meteorites to a level of precision of less than 40 parts per million (2σ). Any pre-existing nucleosynthetic anomaly on ^(70)Zn was averaged out by mixing in the solar nebula before planetary accretion in the solar system. Because neutron-rich nuclides ^(70)Zn and ^(60)Fe are produced by similar nucleosynthetic processes in core-collapse supernovae, the homogeneity of ^(70)Zn in meteorites limits the possible heterogeneity of extinct 60Fe radioactivity in the early solar system. Assuming that Fe and Zn have not been decoupled during incorporation into the solar system, the homogeneity of the ^(70)Zn/^(64)Zn ratio measured here implies that the ^(60)Fe/^(56)Fe ratio was homogenized to less than 15% dispersion before the formation of planetary bodies. The lack (Zn, Ni, Fe) or presence (Ti, Cr) of neutron-rich isotopic anomalies in the iron mass region may be controlled by the volatility of presolar carriers in the nebula

    A dust disk surrounding the young A star HR4796A

    Get PDF
    We report the codiscovery of the spatially-resolved dust disk of the Vega-like star HR 4796A. Images of the thermal dust emission at λ=18μ\lambda = 18 \mum show an elongated structure approximately 200 AU in diameter surrounding the central A0V star. The position angle of the disk, 30±1030^{\circ} \pm 10^{\circ}, is consistent to the position angle of the M companion star, 225225^{\circ}, suggesting that the disk-binary system is being seen nearly along its orbital plane. The surface brightness distribution of the disk is consistent with the presence of an inner disk hole of approximately 50 AU radius, as was originally suggested by Jura et al. on the basis of the infrared spectrum. HR 4796 is a unique system among the Vega-like or β\beta Pictoris stars in that the M star companion (a weak-emission T Tauri star) shows that the system is relatively young, 8±3\sim 8 \pm 3 Myr. The inner disk hole may provide evidence for coagulation of dust into larger bodies on a timescale similar to that suggested for planet formation in the solar system.Comment: 12 pages, 3 PostScript figures, accepted for publication in Astrophysical Journal Letter

    Deep 10 and 18 micron Imaging of the HR 4796A Circumstellar Disk: Transient Dust Particles & Tentative Evidence for a Brightness Asymmetry

    Full text link
    We present new 10.8 and 18.2 micron images of HR 4796A, a young A0V star that was recently discovered to have a spectacular, nearly edge-on, circumstellar disk prominent at ~20 microns (Jayawardhana et al. 1998; Koerner et al. 1998). These new images, obtained with OSCIR at Keck II, show that the disk's size at 10 microns is comparable to its size at 18 microns. Therefore, the 18 micron-emitting dust may also emit some, or all, of the 10 micron radiation. Using these multi-wavelength images, we determine a "characteristic" diameter of 2-3 microns for the mid-infrared-emitting dust particles if they are spherical and composed of astronomical silicates. Particles this small are expected to be blown out of the system by radiation pressure in a few hundred years, and therefore these particles are unlikely to be primordial. Dynamical modeling of the disk (Wyatt et al. 2000) indicates that the disk surface density is relatively sharply peaked near 70 AU, which agrees with the mean annular radius deduced by Schneider et al. (1999) from their NICMOS images. We present evidence (~1.8 sigma significance) for a brightness asymmetry that may result from the presence of the hole and the gravitational perturbation of the disk particle orbits by the low-mass stellar companion or a planet. This "pericenter glow," which must still be confirmed, results from a very small (a few AU) shift of the disk's center of symmetry relative to the central star HR 4796A; one side of the inner boundary of the annulus is shifted towards HR 4796A, thereby becoming warmer and more infrared-emitting. The possible detection of pericenter glow implies that the detection of even complex dynamical effects of planets on disks is within reach.Comment: 18 pages. 9 GIF images. Total size ~800 kB. High resolution images available upon request. Accepted for publication in the Astrophysical Journal (scheduled for January 10, 2000

    Mid-infrared imaging of the young binary star Hen 3-600: Evidence for a dust disk around the primary

    Get PDF
    We present high-resolution mid-infrared observations of the nearby late-type young binary system Hen 3-600. The binary, at a distance of \sim 50 pc, could be a member of the TW Hydrae Association, the nearest known group of young stars, with an age of a few million years. Our images make it possible for the first time to determine which star in the pair, separated by 1.4'', harbors the mid-infrared excess detected by IRAS. In the near-infrared, where the radiation is primarily photospheric, Hen 3-600A (M3) and Hen 3-600B (M3.5) have a flux ratio of 1.6. At 4.8μ\mum, 10.8μ\mum, and 18.2μ\mum, the primary becomes increasingly dominant over the secondary, suggesting that most of the circumstellar dust in the system resides around Hen 3-600A. Comparison of the spectral energy distribution (SED) of Hen 3-600A to the median SED of classical T Tauri stars suggests that its disk may be truncated by the secondary and provides tentative evidence for a central disk hole. The distribution of dust in the Hen 3-600 system may provide important clues to the formation and evolution of protoplanetary disks in close binaries.Comment: 9 pages, 2 PostScript figures, accepted for publication in The Astrophysical Journal Letter

    Impact of grain evolution on the chemical structure of protoplanetary disks

    Full text link
    We study the impact of dust evolution in a protoplanetary disk around a T Tauri star on the disk chemical composition. For the first time we utilize a comprehensive model of dust evolution which includes growth, fragmentation and sedimentation. Specific attention is paid to the influence of grain evolution on the penetration of the UV field in the disk. A chemical model that includes a comprehensive set of gas phase and grain surface chemical reactions is used to simulate the chemical structure of the disk. The main effect of the grain evolution on the disk chemical composition comes from sedimentation, and, to a lesser degree, from the reduction of the total grain surface area. The net effect of grain growth is suppressed by the fragmentation process which maintains a population of small grains, dominating the total grain surface area. We consider three models of dust properties. In model GS both growth and sedimentation are taken into account. In models A5 and A4 all grains are assumed to have the same size (10(-5) cm and 10(-4) cm, respectively) with constant gas-to-dust mass ratio of 100. Like in previous studies, the "three-layer" pattern (midplane, molecular layer, hot atmosphere) in the disk chemical structure is preserved in all models, but shifted closer to the midplane in models with increased grain size (GS and A4). Unlike other similar studies, we find that in models GS and A4 column densities of most gas-phase species are enhanced by 1-3 orders of magnitude relative to those in a model with pristine dust (A5), while column densities of their surface counterparts are decreased. We show that column densities of certain species, like C2H, HC(2n+1)N (n=0-3), H2O and some other molecules, as well as the C2H2/HCN abundance ratio which are accessible with Herschel and ALMA can be used as observational tracers of early stages of the grain evolution process in protoplanetary disks.Comment: 50 pages, 4 tables, 11 figures, accepted to the Ap

    Logistics of Construction in Agbokpa, Ghana

    Get PDF
    In August of 2019, three Cal Poly CM students will travel to the remote fishing village of Agbokpa in Ghana. Our project is to install a water filtration system that will create potable water for the villagers that currently have to walk miles to obtain clean water. We will be laying nearly 1000 ft of pipe, installing a solar powered pump, and building a water filtration system hours away from any electricity. A project of this type requires a great deal of logistical planning in order to ensure that all aspects of the project is thought of and planned for. My project focuses specifically on the logistics of construction in a foreign country such as Ghana. Along with a site map of the construction site, I have created a logistics plan that covers logistical issues such as what to do with materials, where and how we will procure extra labor if necessary, catering and food, etc. With this logistics plan, I will ensure that everything is accounted for and prepare our team for a successful project

    Uncooled tunneling infrared sensor

    Get PDF
    An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane which would otherwise change deflection depending upon incident infrared radiation. The resulting infrared sensor will meet or exceed the performance of all other broadband, uncooled, infrared sensors and can be miniaturized to pixel dimensions smaller than 100 .mu.m. The technology is readily implemented as a small-format linear array suitable for commercial and spacecraft applications

    The Dual Origin of the Terrestrial Atmosphere

    Full text link
    The origin of the terrestrial atmosphere is one of the most puzzling enigmas in the planetary sciences. It is suggested here that two sources contributed to its formation, fractionated nebular gases and accreted cometary volatiles. During terrestrial growth, a transient gas envelope was fractionated from nebular composition. This transient atmosphere was mixed with cometary material. The fractionation stage resulted in a high Xe/Kr ratio, with xenon being more isotopically fractionated than krypton. Comets delivered volatiles having low Xe/Kr ratios and solar isotopic compositions. The resulting atmosphere had a near-solar Xe/Kr ratio, almost unfractionated krypton delivered by comets, and fractionated xenon inherited from the fractionation episode. The dual origin therefore provides an elegant solution to the long-standing "missing xenon" paradox. It is demonstrated that such a model could explain the isotopic and elemental abundances of Ne, Ar, Kr, and Xe in the terrestrial atmosphere.Comment: Icarus, in press, 31 pages, 6 tables, and 6 figure

    Extreme 54Cr-rich nano-oxides in the CI chondrite Orgueil -Implication for a late supernova injection into the Solar System

    Full text link
    Systematic variations in 54Cr/52Cr ratios between meteorite classes (Qin et al., 2010a; Trinquier et al., 2007) point to large scale spatial and/or temporal isotopic heterogeneity in the solar protoplanetary disk. Two explanations for these variations have been proposed, with important implications for the formation of the Solar System: heterogeneous seeding of the disk with dust from a supernova, or energetic-particle irradiation of dust in the disk. The key to differentiating between them is identification of the carrier(s) of the 54Cr anomalies. Here we report the results of our recent NanoSIMS imaging search for the 54Cr-rich carrier in the acid-resistant residue of the CI chondrite Orgueil. A total of 10 regions with extreme 54Cr-excesses ({\delta}54Cr values up to 1500 %) were found. Comparison between SEM, Auger and NanoSIMS analyses showed that these 54Cr-rich regions are associated with one or more sub-micron (typically less than 200 nm) Cr oxide grains, most likely spinels. Because the size of the NanoSIMS primary O- ion beam is larger than the typical grain size on the sample mount, the measured anomalies are lower limits, and we estimate that the actual 54Cr enrichments in three grains are at least 11 times Solar and in one of these may be as high as 50 times Solar. Such compositions strongly favor a Type II supernova origin. The variability in bulk 54Cr/52Cr between meteorite classes argues for a heterogeneous distribution of the 54Cr carrier in the solar protoplanetary disk following a late supernova injection event. Such a scenario is also supported by the O-isotopic distribution and variable abundances in different planetary materials of other presolar oxide and silicate grains from supernovae
    corecore