1,564 research outputs found
Operations and Performance of the PACS Instrument 3He Sorption Cooler on board of the Herschel Space Observatory
A 3He sorption cooler produced the operational temperature of 285mK for the
bolometer arrays of the Photodetector Array Camera and Spectrometer (PACS)
instrument of the Herschel Space Observatory. This cooler provided a stable
hold time between 60 and 73h, depending on the operational conditions of the
instrument. The respective hold time could be determined by a simple functional
relation established early on in the mission and reliably applied by the
scientific mission planning for the entire mission. After exhaustion of the
liquid 3He due to the heat input by the detector arrays, the cooler was
recycled for the next operational period following a well established automatic
procedure. We give an overview of the cooler operations and performance over
the entire mission and distinguishing in-between the start conditions for the
cooler recycling and the two main modes of PACS photometer operations. As a
spin-off, the cooler recycling temperature effects on the Herschel cryostat 4He
bath were utilized as an alternative method to dedicated Direct Liquid Helium
Content Measurements in determining the lifetime of the liquid Helium coolant.Comment: 34 pages, 13 figures, accepted in Experimental Astronom
Observations of the rotational transitions of OH from the Orion molecular cloud
A summary of observed rotationally excited, far infrared OH line emissions from Orion-KL made using the Kuiper Airborne Observatory is given, together with a list of the resulting publications, talks, and lectures based on this data. In addition, a paper is appended, particularly addressing the (16)OH and (18)OH emission from Orion-KL. The first detections of the (16)OH (2)pi(1/2) to (2)pi(3/2) J = 3/2(-) to 3/2(+) rotational cross-ladder transition (53.351 micrometer) and the (18)OH (2)pi(3/2) J = 5/2(+) to 3/2(-) rotational ground-state transition (120.1719 micrometer). It is found that both of these lines exhibit a P-Cygni profile
Stressed detector arrays for airborne astronomy
The development of stressed Ge:Ga detector arrays for far-infrared astronomy from the Kuiper Airborne Observatory (KAO) is discussed. Researchers successfully constructed and used a three channel detector array on five flights from the KAO, and have conducted laboratory tests of a two-dimensional, 25 elements (5x5) detector array. Each element of the three element array performs as well as the researchers' best single channel detector, as do the tested elements of the 25 channel system. Some of the exciting new science possible with far-infrared detector arrays is also discussed
The 158 micron (CII) mapping of galaxies: Probing the atomic medium
Using the MPE/UCB Far-infrared Imaging Fabry-Perot Interferometer (FIFI) on the Kuiper Airborne Observatory (KAO), we have made large scale maps of (CII) in the spiral galaxies NGC 6946, NGC 891, M83 and the peculiar elliptical Cen A, thus allowing for the first time, detailed studies of the spatial distribution of the FIR line emission in external galaxies. We find that the (CII) emission comes from a mixture of components of interstellar gas. The brightest emission is associated with the nuclear regions, a second component traces the spiral arms as seen in the nearly face on spiral galaxies NGC 6946 and M83 and the largest star forming/H2 regions contained within them, and another extended component of low brightness can be detected in all of the galaxies far from the nucleus, beyond the extent of CO emission
16 x 25 Ge:Ga Detector Arrays for FIFI LS
We are developing two-dimensional 16 x 25 pixel detector arrays of both
unstressed and stressed Ge:Ga photoconductive detectors for far-infrared
astronomy from SOFIA. The arrays, based on earlier 5 x 5 detector arrays used
on the KAO, will be for our new instrument, the Far Infrared Field Imaging Line
Spectrometer (FIFI LS). The unstressed Ge:Ga detector array will cover the
wavelength range from 40 to 120 microns, and the stressed Ge:Ga detector array
from 120 to 210 microns. The detector arrays will be operated with multiplexed
integrating amplifiers with cryogenic readout electronics located close to the
detector arrays. The design of the stressed detector array and results of
current measurements on several prototype 16 pixel linear arrays are reported.
They demonstrate the feasibility of the current concept. ***This paper does not
include Figures due to astro-ph size limitations. Please download entire file
at http://fifi-ls.mpe-garching.mpg.de/spie.det.ps.gz ***Comment: 8 pages, SPIE Proceedings, Astronomical Telescopes and
Instrumentation 200
Feasibility and performances of compressed-sensing and sparse map-making with Herschel/PACS data
The Herschel Space Observatory of ESA was launched in May 2009 and is in
operation since. From its distant orbit around L2 it needs to transmit a huge
quantity of information through a very limited bandwidth. This is especially
true for the PACS imaging camera which needs to compress its data far more than
what can be achieved with lossless compression. This is currently solved by
including lossy averaging and rounding steps on board. Recently, a new theory
called compressed-sensing emerged from the statistics community. This theory
makes use of the sparsity of natural (or astrophysical) images to optimize the
acquisition scheme of the data needed to estimate those images. Thus, it can
lead to high compression factors.
A previous article by Bobin et al. (2008) showed how the new theory could be
applied to simulated Herschel/PACS data to solve the compression requirement of
the instrument. In this article, we show that compressed-sensing theory can
indeed be successfully applied to actual Herschel/PACS data and give
significant improvements over the standard pipeline. In order to fully use the
redundancy present in the data, we perform full sky map estimation and
decompression at the same time, which cannot be done in most other compression
methods. We also demonstrate that the various artifacts affecting the data
(pink noise, glitches, whose behavior is a priori not well compatible with
compressed-sensing) can be handled as well in this new framework. Finally, we
make a comparison between the methods from the compressed-sensing scheme and
data acquired with the standard compression scheme. We discuss improvements
that can be made on ground for the creation of sky maps from the data.Comment: 11 pages, 6 figures, 5 tables, peer-reviewed articl
A Herschel study of Planetary Nebulae
We present Herschel PACS and SPIRE images of the dust shells around the
planetary nebulae NGC 650, NGC 6853, and NGC 6720, as well as images showing
the dust temperature in their shells. The latter shows a rich structure, which
indicates that internal extinction in the UV is important despite the highly
evolved status of the nebulae.Comment: 2 pages, 1 figure, 2012, proceedings IAU Symposium 283 Planetary
Nebulae: An Eye to the Futur
The Far-Infrared, UV and Molecular Gas Relation in Galaxies up to z=2.5
We use the infrared excess (IRX) FIR/UV luminosity ratio to study the
relation between the effective UV attenuation (A_IRX) and the UV spectral slope
(beta) in a sample of 450 1<z<2.5 galaxies. The FIR data is from very deep
Herschel observations in the GOODS fields that allow us to detect galaxies with
SFRs typical of galaxies with log(M)>9.3. Thus, we are able to study galaxies
on and even below the main SFR-stellar mass relation (main sequence). We find
that main sequence galaxies form a tight sequence in the IRX--beta plane, which
has a flatter slope than commonly used relations. This slope favors a SMC-like
UV extinction curve, though the interpretation is model dependent. The scatter
in the IRX-beta plane, correlates with the position of the galaxies in the
SFR-M plane. Using a smaller sample of galaxies with CO gas masses, we study
the relation between the UV attenuation and the molecular gas content. We find
a very tight relation between the scatter in the IRX-beta plane and the
specific attenuation (S_A), a quantity that represents the attenuation
contributed by the molecular gas mass per young star. S_A is sensitive to both
the geometrical arrangement of stars and dust, and to the compactness of the
star forming regions. We use this empirical relation to derive a method for
estimating molecular gas masses using only widely available integrated
rest-frame UV and FIR photometry. The method produces gas masses with an
accuracy between 0.12-0.16 dex in samples of normal galaxies between z~0 and
z~1.5. Major mergers and sub-millimeter galaxies follow a different S_A
relation.Comment: 11 pages, 6 pages appendix, 11 figures, accepted to Ap
CEA Bolometer Arrays: the First Year in Space
The CEA/LETI and CEA/SAp started the development of far-infrared filled bolometer arrays for space applications
over a decade ago. The unique design of these detectors makes possible the assembling of large focal planes
comprising thousands of bolometers running at 300 mK with very low power dissipation. Ten arrays of 16x16
pixels were thoroughly tested on the ground, and integrated in the Herschel/PACS instrument before launch in
May 2009. These detectors have been successfully commissioned and are now operating in their nominal environment
at the second Lagrangian point of the Earth-Sun system. In this paper we briefly explain the functioning
of CEA bolometer arrays, and we present the properties of the detectors focusing on their noise characteristics,
the effect of cosmic rays on the signal, the repeatability of the measurements, and the stability of the system
Predicted Colors and Flux Densities of Protostars in the Herschel PACS and SPIRE Filters
Upcoming surveys with the Herschel Space Observatory will yield far-IR
photometry of large samples of young stellar objects, which will require
careful interpretation. We investigate the color and luminosity diagnostics
based on Herschel broad-band filters to identify and discern the properties of
low-mass protostars. We compute a grid of 2,016 protostars in various physical
congurations, present the expected flux densities and flux density ratios for
this grid of protostars, and compare Herschel observations of three protostars
to the model results. These provide useful constraints on the range of colors
and fluxes of protostar in the Herschel filters. We find that Herschel data
alone is likely a useful diagnostic of the envelope properties of young starsComment: Part of HOPS KP papers to the Herschel special A&A issu
- …
