1,564 research outputs found

    Operations and Performance of the PACS Instrument 3He Sorption Cooler on board of the Herschel Space Observatory

    Full text link
    A 3He sorption cooler produced the operational temperature of 285mK for the bolometer arrays of the Photodetector Array Camera and Spectrometer (PACS) instrument of the Herschel Space Observatory. This cooler provided a stable hold time between 60 and 73h, depending on the operational conditions of the instrument. The respective hold time could be determined by a simple functional relation established early on in the mission and reliably applied by the scientific mission planning for the entire mission. After exhaustion of the liquid 3He due to the heat input by the detector arrays, the cooler was recycled for the next operational period following a well established automatic procedure. We give an overview of the cooler operations and performance over the entire mission and distinguishing in-between the start conditions for the cooler recycling and the two main modes of PACS photometer operations. As a spin-off, the cooler recycling temperature effects on the Herschel cryostat 4He bath were utilized as an alternative method to dedicated Direct Liquid Helium Content Measurements in determining the lifetime of the liquid Helium coolant.Comment: 34 pages, 13 figures, accepted in Experimental Astronom

    Observations of the rotational transitions of OH from the Orion molecular cloud

    Get PDF
    A summary of observed rotationally excited, far infrared OH line emissions from Orion-KL made using the Kuiper Airborne Observatory is given, together with a list of the resulting publications, talks, and lectures based on this data. In addition, a paper is appended, particularly addressing the (16)OH and (18)OH emission from Orion-KL. The first detections of the (16)OH (2)pi(1/2) to (2)pi(3/2) J = 3/2(-) to 3/2(+) rotational cross-ladder transition (53.351 micrometer) and the (18)OH (2)pi(3/2) J = 5/2(+) to 3/2(-) rotational ground-state transition (120.1719 micrometer). It is found that both of these lines exhibit a P-Cygni profile

    Stressed detector arrays for airborne astronomy

    Get PDF
    The development of stressed Ge:Ga detector arrays for far-infrared astronomy from the Kuiper Airborne Observatory (KAO) is discussed. Researchers successfully constructed and used a three channel detector array on five flights from the KAO, and have conducted laboratory tests of a two-dimensional, 25 elements (5x5) detector array. Each element of the three element array performs as well as the researchers' best single channel detector, as do the tested elements of the 25 channel system. Some of the exciting new science possible with far-infrared detector arrays is also discussed

    The 158 micron (CII) mapping of galaxies: Probing the atomic medium

    Get PDF
    Using the MPE/UCB Far-infrared Imaging Fabry-Perot Interferometer (FIFI) on the Kuiper Airborne Observatory (KAO), we have made large scale maps of (CII) in the spiral galaxies NGC 6946, NGC 891, M83 and the peculiar elliptical Cen A, thus allowing for the first time, detailed studies of the spatial distribution of the FIR line emission in external galaxies. We find that the (CII) emission comes from a mixture of components of interstellar gas. The brightest emission is associated with the nuclear regions, a second component traces the spiral arms as seen in the nearly face on spiral galaxies NGC 6946 and M83 and the largest star forming/H2 regions contained within them, and another extended component of low brightness can be detected in all of the galaxies far from the nucleus, beyond the extent of CO emission

    16 x 25 Ge:Ga Detector Arrays for FIFI LS

    Get PDF
    We are developing two-dimensional 16 x 25 pixel detector arrays of both unstressed and stressed Ge:Ga photoconductive detectors for far-infrared astronomy from SOFIA. The arrays, based on earlier 5 x 5 detector arrays used on the KAO, will be for our new instrument, the Far Infrared Field Imaging Line Spectrometer (FIFI LS). The unstressed Ge:Ga detector array will cover the wavelength range from 40 to 120 microns, and the stressed Ge:Ga detector array from 120 to 210 microns. The detector arrays will be operated with multiplexed integrating amplifiers with cryogenic readout electronics located close to the detector arrays. The design of the stressed detector array and results of current measurements on several prototype 16 pixel linear arrays are reported. They demonstrate the feasibility of the current concept. ***This paper does not include Figures due to astro-ph size limitations. Please download entire file at http://fifi-ls.mpe-garching.mpg.de/spie.det.ps.gz ***Comment: 8 pages, SPIE Proceedings, Astronomical Telescopes and Instrumentation 200

    Feasibility and performances of compressed-sensing and sparse map-making with Herschel/PACS data

    Full text link
    The Herschel Space Observatory of ESA was launched in May 2009 and is in operation since. From its distant orbit around L2 it needs to transmit a huge quantity of information through a very limited bandwidth. This is especially true for the PACS imaging camera which needs to compress its data far more than what can be achieved with lossless compression. This is currently solved by including lossy averaging and rounding steps on board. Recently, a new theory called compressed-sensing emerged from the statistics community. This theory makes use of the sparsity of natural (or astrophysical) images to optimize the acquisition scheme of the data needed to estimate those images. Thus, it can lead to high compression factors. A previous article by Bobin et al. (2008) showed how the new theory could be applied to simulated Herschel/PACS data to solve the compression requirement of the instrument. In this article, we show that compressed-sensing theory can indeed be successfully applied to actual Herschel/PACS data and give significant improvements over the standard pipeline. In order to fully use the redundancy present in the data, we perform full sky map estimation and decompression at the same time, which cannot be done in most other compression methods. We also demonstrate that the various artifacts affecting the data (pink noise, glitches, whose behavior is a priori not well compatible with compressed-sensing) can be handled as well in this new framework. Finally, we make a comparison between the methods from the compressed-sensing scheme and data acquired with the standard compression scheme. We discuss improvements that can be made on ground for the creation of sky maps from the data.Comment: 11 pages, 6 figures, 5 tables, peer-reviewed articl

    A Herschel study of Planetary Nebulae

    Full text link
    We present Herschel PACS and SPIRE images of the dust shells around the planetary nebulae NGC 650, NGC 6853, and NGC 6720, as well as images showing the dust temperature in their shells. The latter shows a rich structure, which indicates that internal extinction in the UV is important despite the highly evolved status of the nebulae.Comment: 2 pages, 1 figure, 2012, proceedings IAU Symposium 283 Planetary Nebulae: An Eye to the Futur

    The Far-Infrared, UV and Molecular Gas Relation in Galaxies up to z=2.5

    Full text link
    We use the infrared excess (IRX) FIR/UV luminosity ratio to study the relation between the effective UV attenuation (A_IRX) and the UV spectral slope (beta) in a sample of 450 1<z<2.5 galaxies. The FIR data is from very deep Herschel observations in the GOODS fields that allow us to detect galaxies with SFRs typical of galaxies with log(M)>9.3. Thus, we are able to study galaxies on and even below the main SFR-stellar mass relation (main sequence). We find that main sequence galaxies form a tight sequence in the IRX--beta plane, which has a flatter slope than commonly used relations. This slope favors a SMC-like UV extinction curve, though the interpretation is model dependent. The scatter in the IRX-beta plane, correlates with the position of the galaxies in the SFR-M plane. Using a smaller sample of galaxies with CO gas masses, we study the relation between the UV attenuation and the molecular gas content. We find a very tight relation between the scatter in the IRX-beta plane and the specific attenuation (S_A), a quantity that represents the attenuation contributed by the molecular gas mass per young star. S_A is sensitive to both the geometrical arrangement of stars and dust, and to the compactness of the star forming regions. We use this empirical relation to derive a method for estimating molecular gas masses using only widely available integrated rest-frame UV and FIR photometry. The method produces gas masses with an accuracy between 0.12-0.16 dex in samples of normal galaxies between z~0 and z~1.5. Major mergers and sub-millimeter galaxies follow a different S_A relation.Comment: 11 pages, 6 pages appendix, 11 figures, accepted to Ap

    CEA Bolometer Arrays: the First Year in Space

    Get PDF
    The CEA/LETI and CEA/SAp started the development of far-infrared filled bolometer arrays for space applications over a decade ago. The unique design of these detectors makes possible the assembling of large focal planes comprising thousands of bolometers running at 300 mK with very low power dissipation. Ten arrays of 16x16 pixels were thoroughly tested on the ground, and integrated in the Herschel/PACS instrument before launch in May 2009. These detectors have been successfully commissioned and are now operating in their nominal environment at the second Lagrangian point of the Earth-Sun system. In this paper we briefly explain the functioning of CEA bolometer arrays, and we present the properties of the detectors focusing on their noise characteristics, the effect of cosmic rays on the signal, the repeatability of the measurements, and the stability of the system

    Predicted Colors and Flux Densities of Protostars in the Herschel PACS and SPIRE Filters

    Get PDF
    Upcoming surveys with the Herschel Space Observatory will yield far-IR photometry of large samples of young stellar objects, which will require careful interpretation. We investigate the color and luminosity diagnostics based on Herschel broad-band filters to identify and discern the properties of low-mass protostars. We compute a grid of 2,016 protostars in various physical congurations, present the expected flux densities and flux density ratios for this grid of protostars, and compare Herschel observations of three protostars to the model results. These provide useful constraints on the range of colors and fluxes of protostar in the Herschel filters. We find that Herschel data alone is likely a useful diagnostic of the envelope properties of young starsComment: Part of HOPS KP papers to the Herschel special A&A issu
    corecore