365 research outputs found
The effect of prior walking on coronary heart disease risk markers in South Asian and European men.
Purpose: Heart disease risk is elevated in South Asians possibly due to impaired postprandial metabolism. Running has been shown to induce greater reductions in postprandial lipaemia in South Asian than European men but the effect of walking in South Asians is unknown. Methods: Fifteen South Asian and 14 White European men aged 19-30 years completed two, 2-d trials in a randomised crossover design. On day 1, participants rested (control) or walked for 60 min at approximately 50% maximum oxygen uptake (exercise). On day 2, participants rested and consumed two high fat meals over a 9h period during which 14 venous blood samples were collected. Results: South Asians exhibited higher postprandial triacylglycerol (geometric mean (95% confidence interval) 2.29(1.82 to 2.89) vs. 1.54(1.21 to 1.96) mmol·L-1·hr-1), glucose (5.49(5.21 to 5.79) vs. 5.05(4.78 to 5.33) mmol·L-1·hr-1), insulin (32.9(25.7 to 42.1) vs. 18.3(14.2 to 23.7) µU·mL-1·hr-1) and interleukin-6 (2.44(1.61 to 3.67) vs. 1.04(0.68 to 1.59) pg·mL-1·hr-1) than Europeans (all ES ≥ 0.72, P≤0.03). Between-group differences in triacylglycerol, glucose and insulin were not significant after controlling for age and percentage body fat. Walking reduced postprandial triacylglycerol (1.79(1.52 to 2.12) vs. 1.97(1.67 to 2.33) mmol·L-1·hr-1) and insulin (21.0(17.0 to 26.0) vs. 28.7(23.2 to 35.4) µU·mL-1·hr-1) (all ES ≥ 0.23. P≤0.01), but group differences were not significant. Conclusions: Healthy South Asians exhibited impaired postprandial metabolism compared with White Europeans, but these differences were diminished after controlling for potential confounders. The small-moderate reduction in postprandial triacylglycerol and insulin after brisk walking was not different between the ethnicities
Insulin Sensitivity Measured With Euglycemic Clamp Is Independently Associated With Glomerular Filtration Rate in a Community-Based Cohort
OBJECTIVE—To investigate the association between insulin sensitivity and glomerular filtration rate (GFR) in the community, with prespecified subgroup analyses in normoglycemic individuals with normal GFR
ANGPTL4 variants E40K and T266M are associated with lower fasting triglyceride levels in Non-Hispanic White Americans from the Look AHEAD Clinical Trial
<p>Abstract</p> <p>Background</p> <p>Elevated triglyceride levels are a risk factor for cardiovascular disease. Angiopoietin-like protein 4 (Angptl4) is a metabolic factor that raises plasma triglyceride levels by inhibiting lipoprotein lipase (LPL). In non-diabetic individuals, the <it>ANGPTL4 </it>coding variant E40K has been associated with lower plasma triglyceride levels while the T266M variant has been associated with more modest effects on triglyceride metabolism. The objective of this study was to determine whether ANGPTL4 E40K and T266M are associated with triglyceride levels in the setting of obesity and T2D, and whether modification of triglyceride levels by these genetic variants is altered by a lifestyle intervention designed to treat T2D.</p> <p>Methods</p> <p>The association of <it>ANGPTL4 </it>E40K and T266M with fasting triglyceride levels was investigated in 2,601 participants from the Look AHEAD Clinical Trial, all of whom had T2D and were at least overweight. Further, we tested for an interaction between genotype and treatment effects on triglyceride levels.</p> <p>Results</p> <p>Among non-Hispanic White Look AHEAD participants, <it>ANGPTL4 </it>K40 carriers had mean triglyceride levels of 1.61 ± 0.62 mmol/L, 0.33 mmol/L lower than E40 homozygotes (p = 0.001). Individuals homozygous for the minor M266 allele (MAF 30%) had triglyceride levels of 1.75 ± 0.58 mmol/L, 0.24 mmol/L lower than T266 homozygotes (p = 0.002). The association of the M266 with triglycerides remained significant even after removing K40 carriers from the analysis (p = 0.002). There was no interaction between the weight loss intervention and genotype on triglyceride levels.</p> <p>Conclusions</p> <p>This is the first study to demonstrate that the <it>ANGPTL4 </it>E40K and T266M variants are associated with lower triglyceride levels in the setting of T2D. In addition, our findings demonstrate that <it>ANGPTL4 </it>genotype status does not alter triglyceride response to a lifestyle intervention in the Look AHEAD study.</p
Impact of Clinical Characteristics of Individual Metabolic Syndrome on the Severity of Insulin Resistance in Chinese Adults
The impact the metabolic syndrome (MetS) components on the severity of insulin resistance (IR) has not been reported. We enrolled 564 subjects with MetS and they were divided into quartiles according to the level of each component; and an insulin suppression test was performed to measure IR. In males, steady state plasma glucose (SSPG) levels in the highest quartiles, corresponding to body mass index (BMI) and fasting plasma glucose (FPG), were higher than the other three quartiles and the highest quartiles, corresponding to the diastolic blood pressure and triglycerides, were higher than in the lowest two quartiles. In females, SSPG levels in the highest quartiles, corresponding to the BMI and triglycerides, were higher than in all other quartiles. No significant differences existed between genders, other than the mean SSPG levels in males were greater in the highest quartile corresponding to BMI than that in the highest quartile corresponding to HDL-cholesterol levels. The factor analysis identified two underlying factors (IR and blood pressure factors) among the MetS variables. The clustering of the SSPG, BMI, triglyceride and HDL-cholesterol was noted. Our data suggest that adiposity, higher FPG and triglyceride levels have stronger correlation with IR and subjects with the highest BMI have the highest IR
The effect of physical exercise and caloric restriction on the components of metabolic syndrome
Blood pressure in Warmblood horses before and during a euglycemic-hyperinsulinemic clamp
Direct regulation of insulin secretion by angiotensin II in human islets of Langerhans
Renin-angiotensin system inhibition prevents type 2 diabetes mellitus. Part 2. Overview of physiological and biochemical mechanisms.
The inhibition of the renin-angiotensin system (RAS) with either angiotensin converting enzyme inhibitors (ACEIs) or AT1 angiotensin receptor blockers (ARBs) consistently and significantly reduces the incidence of type 2 diabetes in patients with hypertension or congestive heart failure. The mechanisms underlying this protective effect appear to be complex and may involve an improvement of both insulin sensitivity and insulin secretion. These two effects may result, at least in part, from the well known effects of these pharmacological agents on the vascular system on the one hand, on the ionic balance on the other hand. Indeed, the vasodilation induced by ACEIs or ARBs could improve the blood circulation in skeletal muscles, thus favouring peripheral insulin action, but also in the pancreas, thus promoting insulin secretion. Preserving cellular potassium and magnesium pools by blocking the aldosterone effects could also improve both cellular insulin action and insulin secretion. However, besides these classical effects, new mechanisms have been recently suggested. A direct effect of the inhibition of angiotensin and/or of the enhancement of bradykinin on various steps of the insulin cascade signalling has been described as well an increase in GLUT4 glucose transporters after RAS inhibition. Furthermore, it has been demonstrated that angiotensin II inhibits adipogenic differentiation of human adipocytes via A1 receptors and, therefore, it has been hypothesised that RAS blockade may prevent diabetes by promoting the recruitment and differentiation of adipocytes. Finally, some lipophilic ARBs appear to induce PPAR-gamma activity in the adipose tissue. Hence, the protection against type 2 diabetes observed after RAS inhibition may be partially linked to a thiazolidinedione-like effect. In conclusion, numerous physiological and biochemical mechanisms could explain the protective effect of RAS inhibition against the development of type 2 diabetes in individuals with arterial hypertension or congestive heart failure. What might be the main mechanism in the overall protection effect of ACEIs or ARBs remains an open question
A Comparison of the Effects of Hydrochlorothiazide and Captopril on Glucose and Lipid Metabolism in Patients with Hypertension
- …
