1,744 research outputs found

    Engineering Local optimality in Quantum Monte Carlo algorithms

    Full text link
    Quantum Monte Carlo algorithms based on a world-line representation such as the worm algorithm and the directed loop algorithm are among the most powerful numerical techniques for the simulation of non-frustrated spin models and of bosonic models. Both algorithms work in the grand-canonical ensemble and have a non-zero winding number. However, they retain a lot of intrinsic degrees of freedom which can be used to optimize the algorithm. We let us guide by the rigorous statements on the globally optimal form of Markov chain Monte Carlo simulations in order to devise a locally optimal formulation of the worm algorithm while incorporating ideas from the directed loop algorithm. We provide numerical examples for the soft-core Bose-Hubbard model and various spin-S models.Comment: replaced with published versio

    Phase diagram of Bose-Fermi mixtures in one-dimensional optical lattices

    Full text link
    The ground state phase diagram of the one-dimensional Bose-Fermi Hubbard model is studied in the canonical ensemble using a quantum Monte Carlo method. We focus on the case where both species have half filling in order to maximize the pairing correlations between the bosons and the fermions. In case of equal hopping we distinguish between phase separation, a Luttinger liquid phase and a phase characterized by strong singlet pairing between the species. True long-range density waves exist with unequal hopping amplitudes.Comment: 5 pages, 5 figures, replaced with published versio

    Vacancy supersolid of hard-core bosons on the square lattice

    Full text link
    The ground state of hard-core bosons on the square lattice with nearest and next-nearest neighbor repulsion is studied by Quantum Monte Carlo simulations. A supersolid phase with vacancy condensation and 'star' diagonal ordering is found for filling less than a quarter. At fillings above one quarter, a supersolid phase exists between the star and the stripe crystal at half-filling. No supersolid phase occurs above quarter-filling, if the ground state at half-filling is either a checkerboard crystal or a superfluid. No commensurate supersolid phase is observed.Comment: Replaced with published versio

    The use of data-mining for the automatic formation of tactics

    Get PDF
    This paper discusses the usse of data-mining for the automatic formation of tactics. It was presented at the Workshop on Computer-Supported Mathematical Theory Development held at IJCAR in 2004. The aim of this project is to evaluate the applicability of data-mining techniques to the automatic formation of tactics from large corpuses of proofs. We data-mine information from large proof corpuses to find commonly occurring patterns. These patterns are then evolved into tactics using genetic programming techniques

    Consequences of the Pauli exclusion principle for the Bose-Einstein condensation of atoms and excitons

    Get PDF
    The bosonic atoms used in present day experiments on Bose-Einstein condensation are made up of fermionic electrons and nucleons. In this Letter we demonstrate how the Pauli exclusion principle for these constituents puts an upper limit on the Bose-Einstein-condensed fraction. Detailed numerical results are presented for hydrogen atoms in a cubic volume and for excitons in semiconductors and semiconductor bilayer systems. The resulting condensate depletion scales differently from what one expects for bosons with a repulsive hard-core interaction. At high densities, Pauli exclusion results in significantly more condensate depletion. These results also shed a new light on the low condensed fraction in liquid helium II.Comment: 4 pages, 2 figures, revised version, now includes a direct comparison with hard-sphere QMC results, submitted to Phys. Rev. Let

    Competition between pairing and ferromagnetic instabilities in ultracold Fermi gases near Feshbach resonances

    Get PDF
    We study the quench dynamics of a two-component ultracold Fermi gas from the weak into the strong interaction regime, where the short time dynamics are governed by the exponential growth rate of unstable collective modes. We obtain an effective interaction that takes into account both Pauli blocking and the energy dependence of the scattering amplitude near a Feshbach resonance. Using this interaction we analyze the competing instabilities towards Stoner ferromagnetism and pairing.Comment: 4+epsilon pages, 4 figure

    Quantum Monte Carlo simulation in the canonical ensemble at finite temperature

    Full text link
    A quantum Monte Carlo method with non-local update scheme is presented. The method is based on a path-integral decomposition and a worm operator which is local in imaginary time. It generates states with a fixed number of particles and respects other exact symmetries. Observables like the equal-time Green's function can be evaluated in an efficient way. To demonstrate the versatility of the method, results for the one-dimensional Bose-Hubbard model and a nuclear pairing model are presented. Within the context of the Bose-Hubbard model the efficiency of the algorithm is discussed.Comment: 11 pages, 8 figure

    Ultracold atoms in one-dimensional optical lattices approaching the Tonks-Girardeau regime

    Get PDF
    Recent experiments on ultracold atomic alkali gases in a one-dimensional optical lattice have demonstrated the transition from a gas of soft-core bosons to a Tonks-Girardeau gas in the hard-core limit, where one-dimensional bosons behave like fermions in many respects. We have studied the underlying many-body physics through numerical simulations which accommodate both the soft-core and hard-core limits in one single framework. We find that the Tonks-Girardeau gas is reached only at the strongest optical lattice potentials. Results for slightly higher densities, where the gas develops a Mott-like phase already at weaker optical lattice potentials, show that these Mott-like short range correlations do not enhance the convergence to the hard-core limit.Comment: 4 pages, 3 figures, replaced with published versio

    Dynamical mean field solution of the Bose-Hubbard model

    Full text link
    We present the effective action and self-consistency equations for the bosonic dynamical mean field (B-DMFT) approximation to the bosonic Hubbard model and show that it provides remarkably accurate phase diagrams and correlation functions. To solve the bosonic dynamical mean field equations we use a continuous-time Monte Carlo method for bosonic impurity models based on a diagrammatic expansion in the hybridization and condensate coupling. This method is readily generalized to bosonic mixtures, spinful bosons, and Bose-Fermi mixtures.Comment: 10 pages, 3 figures. includes supplementary materia

    Optimal Monte Carlo Updating

    Get PDF
    Based on Peskun's theorem it is shown that optimal transition matrices in Markov chain Monte Carlo should have zero diagonal elements except for the diagonal element corresponding to the largest weight. We will compare the statistical efficiency of this sampler to existing algorithms, such as heat-bath updating and the Metropolis algorithm. We provide numerical results for the Potts model as an application in classical physics. As an application in quantum physics we consider the spin 3/2 XY model and the Bose-Hubbard model which have been simulated by the directed loop algorithm in the stochastic series expansion framework.Comment: 6 pages, 5 figures, replaced with published versio
    corecore